To be completed by candidate and school	
Name:	
NSN	School Code

DAY 2 THURSDAY

SUPERVISOR'S USE ONLY

COMMON ASSESSMENT TASK

Level 1 Mathematics and Statistics 2021 91027 Apply algebraic procedures in solving problems

Thursday 16 September 2021 Credits: Four

You should attempt ALL the questions in this booklet. Show ALL working.

Calculators may NOT be used.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

You are required to show algebraic working in this paper. 'Guess and check' and 'correct answer only' methods do not demonstrate relational thinking and will limit the grade for that part of the question to a maximum of Achievement. 'Guess and check' and 'correct answer only' may only be used a maximum of one time in the paper and will not be used as evidence of solving a problem. A candidate cannot gain Achievement in this standard without solving at least one problem, using algebra.

Answers must be given in their simplest algebraic form.

Where a question is given in words, you are expected to show the equation that you used to solve the problem.

Check that this booklet has pages 2–10 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

ASSESSOR'S USE ONLY Achievement Criteria						
Achievement	Achievement with Merit	Achievement with Excellence				
Apply algebraic procedures in solving problems.	Apply algebraic procedures, using relational thinking, in solving problems.	Apply algebraic procedures, using extended abstract thinking, in solving problems.				
	Over	all level of performance				

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Given that the perimeter of the shape shown below is 35 cm, find the value of y.

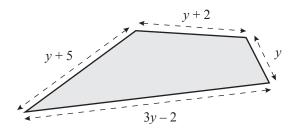
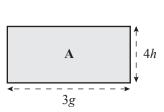



Diagram is NOT to scale

(b) Solve the inequality: $(4x + 3)(2x - 1) \ge (x - 2)(8x + 1)$

Find the length and width of rectangles A and B.

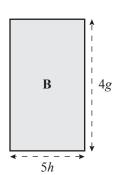


Diagram is NOT to scale

(d)	Solve the equation:	y+3	$\frac{2y-3}{2} = 3$
(u)	solve the equation.	4	3

(e) A flower bed, 9 metres long and 6 metres wide, lies in the centre of a fenced backyard, leaving a border x metres wide between each edge of the flower bed and the fence.

The area of the whole backyard is double the area of the flower bed.

Find the width, x metres, of the border.

 $\begin{array}{c}
 & \downarrow \\
 & \downarrow \\$

Diagram is NOT to scale

QUESTION TWO

ASSESSOR'S USE ONLY

(a)	What is the area of a square with sides of length $(4y + 7)$ cm?
	Give your answer in terms of y and in the form $ay^2 + by + c$.

(b)	Solve the equation: $2^{2y} \times 2^{2y-12} = 16$

(c)	Solve the equation: $\frac{3}{y-4} - \frac{3}{y+4} = \frac{2}{y+1}$	

Billi has been pa exercises.	ainting some straight lines on a field for her netball team to do some training
The total length	of all the painted lines shown in the diagram below is 16 metres.
f the shaded are	ea is 10 m^2 , find the possible values of x .
	∢ x
	Diagram is NOT to scale

QUESTION THREE

ASSESSOR'S USE ONLY

The equation $5 = 3x^2 - 14x$ has two solutions, a and b, with a being greater than b.
What is the value of $a - b$?
Find the values of the numbers v and w that will make $(3x + v)^2 = 9x^2 + wx + 16$ true, given that both v and w are positive numbers.
Find the values of the numbers v and w that will make $(3x + v)^2 = 9x^2 + wx + 16$ true, given that both v and w are positive numbers.

. 7 <i>n</i> -	-6a .						
		the equati	ion for a i	n terms of	f p and T .		
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equati	ion for q f		1		
If $T = \frac{7p}{p}$	$\frac{1}{3q}$, give	the equal					
If $T = \frac{p}{p}$	$\frac{1}{3q}$, give	the equati	ion for y				
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	me equan					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	me equan					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equali					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equali					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equali					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equali					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equali					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equali					
If $T = \frac{P}{p}$	3q, give	the equali					
If $T = \frac{P}{p}$	3q, give	the equali					
If $T = \frac{P}{p}$	$\frac{1}{3q}$, give	the equality					
If $T = \frac{P}{p}$	3q, give	the equality					
If $T = \frac{P}{p}$	3q, give	the equality					
If $T = \frac{P}{p}$	3q, give	the equality					
If $T = \frac{P}{p}$	3q, give	the equality					

		Extra space if required.	
	1	Write the question number(s) if applicable.	
UESTION NUMBER			

ASSESSOR'S USE ONLY

	Extra space if required.	
	Write the question number(s) if applicable.	
QUESTION NUMBER		