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Level 3 Calculus 2021
91577 Apply the algebra of complex numbers  

in solving problems

Credits: Five

Achievement Achievement with Merit Achievement with Excellence
Apply the algebra of complex numbers 
in solving problems.

Apply the algebra of complex numbers, 
using relational thinking, in solving 
problems.

Apply the algebra of complex numbers, 
using extended abstract thinking, in 
solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the 
top of this page.

You should attempt ALL the questions in this booklet.

Show ALL working.

Make sure that you have the Formulae and Tables Booklet L3–CALCF.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2 – 12 in the correct order and that none of these pages is blank.

Do not write in any cross-hatched area ( ). This area may be cut off when the booklet is marked.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Tick this box if you 
have NOT written 

in this booklet



QUESTION ONE

(a) Given that w = d + 5i and z = 3 – 4i, find the value of d if wz = 38 – 9i.

(b) If z = 2 + 3i, show 26z  on the Argand diagram below.
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(c) The polynomial f (x) = x3 + 3x2 + ax + b has the same remainder when divided by (x – 2) as it does 
when divided by (x + 1).

 The polynomial f (x) also has (x + 2) as a factor.

 Find the values of a and b.

(d) Show that if z = 1+ 3i, then arg z −1
z − 2i

⎛
⎝⎜

⎞
⎠⎟
= π
4
.
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(e) Given that the real part of z − 2i
z − 4

 is zero and z ≠ 4, prove that the locus of points described by z 

is given by the Cartesian equation (x – 2)2 + (y – 1)2 = 5.
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QUESTION TWO

(a) Given that u = 2i and w = 2cis 2π
3

⎛
⎝⎜

⎞
⎠⎟
, find z = u

w
.

(b) Solve the equation x2 – 12qx + 20q2 = 0 for x in terms of q, expressing any solutions in their 
simplest form.

(c) Prove that a + bi
b− ai

 is purely imaginary, where a and b are real constants.
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(d) Solve the equation z3 = k 6 + k 6 i, where k is a real constant.

(e) If z is a complex number and | z + 16 | = 4 | z + 1 |, find the value of | z |.
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QUESTION THREE

(a) The complex number u = 5+mi has u = 6.

Given that 0 < arg(u) < π
2

, find the exact value of real number m.

(b) Write 18
4− 2 3

in the form a + b 3,  where a and b are integers.

Question Three continues 
on the next page.
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(c)  One solution of 4z3 – 19z2 + 128z + A = 0 is z = 2 + 5i.

 If A is real, find the value of A and the other two solutions of the equation.

(d) Solve the following equation for x in terms of m.

  6 2x −5= 6 2x +m     
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(e) Solve the equation z2 = i(|z|2 – 4).
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QUESTION 
NUMBER

Extra space if required.
Write the question number(s) if applicable.
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