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QUESTION ONE
'ﬂt-iate—ﬁd)_ﬂ?ﬁﬁ(br)\
F L 4 t0n2x

! 1 '
=o% % J=pe

2x
> at the point where x = 0.

(b) Find the gradient of the tangent to the curve y = "
x

You must use calculus and show any derivatives that you need to find when solving this
problem.
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(¢) The normal to the parabola y = 0.5(x — 3)? + 2 at the point (1,4) intersects the parabola again
at the point P.

4~ 8

Find the x-coordinate of point P.

You must use calculus and show any derivatives that you need to find when solving this
problem.
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(d) A curveis defined parametrically by the equations x =+/t +1 and y = sin 2z,

Find the gradient of the tangent to the curve at the point when ¢ = 0.

You must use calculus and show any derivatives that you need to find when solving this
problem.
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(¢) Find the values of a and b such that the curve y= i ? has a turning point at (3,1).

You must use calculus and show any derivatives that you need to find when solving this
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QUESTION TWO

(a) Differentiate y = 2(x? — 4x)°.
You do not need to simplify your answer._ — S S

,{Z’T: 0 s (2= 4x)" g'= 504z g -4)

= |0 (27 - A P (2 - 4)//%
.

(b) The percentage of seeds germinating depends on the amount of water applied to the seedbed
that the seeds are sown in, and may be modelled by the function:

P(w) =96 In(w + 1.25) — 16w — 12
where P is the percentage of seeds that germinate and
w is the daily amount of water applied (litres per square metre of seedbed), with 0 <w < 15.

Find the amount of water that should be applied daily to maximise the percentage of seeds

germinating.
You must use calculus and show any derivatives that you need to find when solving this
problem.
f -
P'lw): d6 -16 =0

W+l.15
a6 - 16
AVl T4a)
a6 = [6(w+1.25) = [6nw+20
(buo = 36 ,
W= 4.75

i

ASSESSOR'S
USE ONLY

—

-
g

=

Calculus 91578, 2017



7

(c) The tangent to the curve y = Jx is drawn at the point (4,2).

y

-~

(4,2)

e Q/
/ T

Find the co-ordinates of the point Q where the tangent intersects the x-axis.

You must use calculus and show any derivatives that you need to find when solving this

problem. . -
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(d) Find the coordinates of the point P (x,) on the curve y= Jx that is closest ASSEESORS
to the point (4,0).
y
4_
P (xy)
2_
& @ I | I | R
2 4 6 8 10

You do not need to prove that your solution is the minimum value.

You must use calculus and show any derivatives that you need to find when solving this
— __“‘“"-\_
problem.
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(e) Arectangle is inscribed in a semi-circle of radius 7, as shown below. AssEssoR's

Show that the maximum possible area of such a rectangle occurs when x = %

You do not need to prove that your solution gives the maximum area.

You must use calculus and show any derivatives that you need to find when solving this

e ———
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QUESTION THREE

(a) Differentiate y = xIn(3x — 1).

You do not need to simplify your answer.

fee P g° dn (z-1)

S -\

)= 2= s ¢ In(zz2 1)

(b) Find the gradient of the curve y= 1 LZ at the point (2%)
X x

You must use calculus and show any derivatives that you need to find when solving this
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The graph below shows the function y = f(x).
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For the function above:
(1)  Find the value(s) Of,’f. @gmet.meihuomrggﬂ{dltlons:

1) fle)=0: z =7 WO -_j*_:;_';'i
. o ——
(2) f(x) is continuous but not differentiable: ) 2 ) %

(3) f(x) is not continuous: SC - '\ ) x %

@ <o | < %}/

¢
(i) Whatis the value of lim f(x)? s
State clearly if the value does %
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(d) A building has an external elevator. The elevator is rising at a constant rate of 2 m s71,

Sarah is stationary, watching the elevator from a point 30 m away from the base of the
elevator shaft.

Let the angle of elevation of the elevator floor from Sarah's eye level be 6.

20m s

www.alibaba.com/product-detail/Sicher-external-
elevator_60136882005.html

Find the rate at which the angle of elevation is increasing when the elevator floor 13@0 m_

above Sarah’s eye level.

You must use calculus and show any derivatives that you need to find when solving this
problem.
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For the function y = e*cos kx : ASSESSOR'S
USE ONLY
2
(i) Find Y and d—2
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(i)  Find all the value(s) of & such that the function y = e*cos kx satisfies the eq({o
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Merit exemplar

Subject:

Level 3 Calculus Standard: | 91578 Total score: | 17
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Grade
score

Annotation

M6

This question provides evidence towards M6 because the candidate
has correctly completed part 1d by using parametric differentiation to

find Z—z and to then accurately substitute t = 0 to evaluate the required
gradient of 4.

The candidate has also partially completed the excellence problem, part
1e. They have successfully used the quotient rule to find Z—i’ and have

substituted x = 3 and Z—i’ = 0 to rearranged the resulting equation to find

a correct relationship between the pronumerals, a and b for which they
gain an r. They would have needed to substitute the given point (3, 1)
into the original function to find a second relationship between a and b
and then solved the resulting the simultaneous equations if they were to
gain the E8 for this question.

M5

The candidate provides evidence for M5 by correctly completing part 2c.
In this question they have demonstrated that they are able to use
calculus to find the equation of the tangent and then its x-axis intercept
by substituting y = 0 into the equation of the tangent.

The candidate was not able to gain an M6 because they could not form
the required model in part 2d for the distance between a point on the
square root function and the point (4, 0). Similarly in the part 2e, this
candidate was not able to form an appropriate model for the rectangle
inscribed in the semi-circle provided.

M6

The candidate gained an r code when they correctly identified the
appropriate x values for three of the four features required in part 3c(i)
as well as clearly stating the limit required in part 3c(ii).

They gained a M6 rather than an M5 because they gained a second r
code when they demonstrated that they were able to find the second
derivative of the function y = e*coskx by applying the product rule and
chain rules successfully in part 3e(i).

They were not able to achieve an E7 or an E8 because they were not

successful in their attempt to substitute into the differential equation of
part 3e(ii) and therefore did not find the correct equation needing to be
solved for this problem.






