

91170

 if you have NOT written in this booklet

NZQA

Level 2 Physics 2023
 91170 Demonstrate understanding of waves

Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of waves.	Demonstrate in-depth understanding of waves.	Demonstrate comprehensive understanding of waves.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Sheet L2-PHYSR.
In your answers use clear numerical working, words, and/or diagrams as required.
Numerical answers should be given with an appropriate SI unit.
If you need more room for any answer, use the extra space provided at the back of this booklet.
Check that this booklet has pages $2-16$ in the correct order and that none of these pages is blank.
Do not write in any cross-hatched area (
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

QUESTION ONE: THE COSTUME SHOP

Marco and Harvey head to the mall to buy props for the school show. Their first stop is the costume shop.
The students start looking at hats in a concave mirror of focal length 25 cm . The mirror image is initially real.
(a) Define the term real as it is used in this context.

The image is made of light \& is before the mirror. Areal image can bet projected on a screen

Marco stands 40 cm in front of the mirror and the image is formed in the location shown below.
(b) Complete the diagram below to show how this image forms.

(c) Calculate the magnification of the image formed.

$$
\begin{aligned}
& m=\frac{d_{i}}{d_{0}} \\
& 1 d_{i}=\frac{2}{3}=\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{0}} \quad \frac{1}{d_{i}}=\frac{1}{0.25}=\frac{1}{0.4}=\frac{3}{2} \\
& m=\frac{0.67}{0.4}=1.675
\end{aligned}
$$

(d) Harvey now stands 10 cm in front of the concave mirror.

By using a ray diagram and calculating the image distance and magnification, describe and explain the nature of the new image formed.

$\frac{1}{f}=\frac{1}{c_{i}}+\frac{1}{d_{i}} \quad \frac{1}{i_{i}}=\frac{1}{f}-\frac{1}{d_{2}}=\frac{1}{a_{22}}-\frac{1}{-a}=\frac{-6}{1}$
$d_{i}=\frac{1}{6}=-0.167 m \quad$ this means that
\qquad the image is also upright.

QUESTION TWO: THE WISHING POND

The students walk past a wishing pond for a local charity. People throw coins into the water, and these are collected at the end of the day. As the students sit on the side of the pond, they notice the coins appear closer to the surface of the water than they actually are.
(a) Name the physics phenomenon that causes the coins to appear closer to the surface than they actually are.
https://www.istockphoto.com/photo/ many-coins-thrown-into-a-water-fountaingm 1278125918-377163413

refraction

(b) The following diagram shows the light ray as it leaves the water. The refractive index of water is 1.33 and air is 1.00 .

Calculate the angle θ, shown at the surface of the water.

$$
\begin{aligned}
& \theta_{2}=50^{\circ} \quad \theta_{1}=? \quad n_{1}=1.33 \quad n_{2}=1 \\
& \theta_{1}-n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right) \quad n^{(35 L)} \\
& \theta_{1}=\sin ^{-1}\left(\frac{n \times \sin (50)}{1.33}\right)=35.2^{(35}
\end{aligned}
$$

(c) The students notice a diamond in a jeweller's shop. They know total internal reflection is the main cause of the sparkle of the diamond.
Refractive index of diamond $=2.42$
Critical angle of diamond $=24.4^{\circ}$
Speed of light in air $=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

A ray of light passes through the boundary between air and the diamond.
(i) Calculate the speed of light in the diamond.

$$
\begin{aligned}
& \begin{array}{l}
\text { Calculate the speed of light in the diamond. } \\
n_{1} \\
n_{2}
\end{array}=\frac{V_{2}}{V_{1}} \quad V_{2}=\frac{1 \times 3 \times 10^{8}}{2.42}=1.2 \times 10^{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

(ii) State what happens to the frequency of the light as it passes into the diamond.

The frequency remains the same when it changes medium, $\frac{y_{2}}{V_{1}}=\frac{x_{2}}{A_{1}}$ the wavelength granges at the same ante as the speed $V=\overrightarrow{F \lambda}$

$$
\begin{aligned}
& \text { chantesat the } \\
& \text { chan }
\end{aligned}
$$

same rate
(d) (i) Using appropriate calculations, show that the critical angle for diamond is 24.4°.
$n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \theta_{2}$ the critical angle is the incident angl when refracted to 90°

$$
\begin{aligned}
2.42 \times \sin \left(\theta_{c}\right)=1 \times \sin (90) \quad \theta_{c} & =\sin ^{-1}\left(\frac{\sin (90)}{2.42}\right) \\
\theta_{c} & =24.9^{2051)}
\end{aligned}
$$

(ii) Explain total internal reflection in terms of the conditions required, and include a definition of the critical angle.
Total Internal Reflection is when an ray instead of retracting reflects. This happens when aray is going from more optically dense to less \& the angle of incidence is greater than the critical angle.) 90° critical angle is thenghe of incidence whens refoncted to 90°. When θ_{1} is greater than θ_{c} it can nolongen Refract a way from thenon mail as that is greater than the foundry this means that if will reflect instead.

QUESTION THREE: THE OPTICIAN

The students decide to try out some prescription glasses. They try out two types of glasses, both of the same shape and material but with different thicknesses.

Thick lens

www.aliexpress.com/i/4001151117795.html

Thin lens
www.amazon.in/Artificial-Glass-Crystal-Watchmakers-Accessories /dp/B09ZTT7C19
(a) How does the focal length of the thin lens compare to the focal length of the thick lens?

No calculation required.
The thicklense has a closer focal point.
(b) A different set of glasses has convex lenses with focal length 30 cm .

Complete the ray diagram below to show the position and appearance of the image produced.

(c) The students walk further along the mall and hear music playing from a radio around the corner. At point A they only hear the low pitch of a bass guitar, and cannot work out the tune. At point B they hear the bass guitar and the high pitch of an electric guitar playing the same track of music.

Point B: Student hears bass and high pitch here.

Point A: Student
hears bass only here.

Sources: www.kindpng.com/imgv/iiRhiJh_ykle-caillou-cartoon-asian-cartoon-characters-disney-hd/ https://whyy.org/articles/seaside-heights-bans-loud-music-on-beaches/

Why do they hear the bass guitar and not the electric guitar at point A, even though they are both at the same volume?

Your answer should identify the physics phenomenon, and explain the effect of the corner on this process.
You may use the diagram above to support your answer.
If you need to redraw your response, 1 use the diagram on page 11. The bass gu e guitar is a lower pitched instrument meaning it has a larger wavelength, the sound from the speaker must diffract around the comes to the ct the student in point a this memes that the sounds with a larger warcleng th like the bass qu guitar will diffract more around the corner because Larger wavelengths diffract more, When the student reaches point Bs The sound does not meed to diftractas much and it hern the higher pitched guitar can be
(d) Later they pass by the hall where a band is tuning their instruments and playing a single frequency. The hall has two open doors. The students notice the sound appears to vary in volume as they walk past the doors. Assume the tuning frequency is played at a constant volume.

HIIHIIIIIIIIIIHIIIIIIIHIIIIIHIIII!

Sources: https://www.pngwing.com/en/free-png-njmzc
www.kindpng.com/imgv/iiRhiJh_ykle-caillou-cartoon-asian-cartoon-characters-disney-hd/

Through the use of appropriate diagrams and the use of physics concepts, identify, describe, and explain the physics phenomena that are taking place to cause the sound to vary in volume.

When the speakers sound reaches the door ways it diffracts around the creating two sources oh identical sound waves. When these waves intercept Interferience occurs. The nodal lines (black) are 180° out of phase so the amplitude is O \& deconstructive interference occurs. the nodal lines have path differences of 0.5, 1.5,2.5 3.5 etc. The Antinodal lines are where constructive inter ference occurs these lines (blue) are in phase with pith diftrevences of $(0,1,2,3 \mathrm{etc})$. When the studuetz walks past the doors thy will hearer difference volumes. When walking Through anti nodal lines the volume will be louder because antinolal lines have doable the am amplitude. When walking through the nodal lines the sound will be mych more quE- quiet because The amplitude is decreased. The sound will also increase as they get closer to the doorsbecous the sound doesn't have to travel as for.

SPARE DIAGRAMS

If you need to redraw your response to Question One (b), use the diagram below. Make sure it is clear which answer you want marked.

If you need to redraw your response to Question One (d), use the space below. Make sure it is clear which answer you want marked.

If you need to redraw your response to Question Three (b), use the space below. Make sure it is clear which answer you want marked.

If you need to redraw your response to Question Three (c), use the space below. Make sure it is clear which answer you want marked.

Point B: Student hears bass and high pitch here.

Point A: Student hears bass only here.

If you need to redraw your diagrams for Question Three (d), use the space below. Make sure it is clear which answer you want marked.

Extra space if required.
Write the question number(s) if applicable.

Extra space if required.
Write the question number(s) if applicable.

Extra space if required.

 Write the question number(s) if applicable.
Extra space if required. Write the question number(s) if applicable.

QUESTION NUMBER

Extra space if required. Write the question number(s) if applicable.

Excellence

Subject: Physics
Standard: 91170
Total score: 24

Q	Grade score	Marker commentary
One	E8	Answered completely, with mirror diagrams showing appropriate rays (including arrows) and comprehensive calculations and explanations.
Two	E8	All calculations correct (including using correct angle of refraction) with units and full explanation of total internal reflection.
Three	E8	Shows thorough understanding of lenses, diffraction and 2-point source interference through appropriate descriptions and diagrams.

