

91173

 NZQA Mana Tohu Mātauranga o Aotearoa New Zealand Qualifications Authority

Level 2 Physics 2023 91173 Demonstrate understanding of electricity and electromagnetism

Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of electricity and electromagnetism.	Demonstrate in-depth understanding of electricity and electromagnetism.	Demonstrate comprehensive understanding of electricity and electromagnetism.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Sheet L2-PHYSR.
In your answers use clear numerical working, words, and/or diagrams as required.
Numerical answers should be given with an appropriate SI unit.
If you need more room for any answer, use the extra space provided at the back of this booklet. Check that this booklet has pages 2-12 in the correct order and that none of these pages is blank.

Do not write in any cross-hatched area (
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

QUESTION ONE: PARALLEL PLATES

A set of parallel plates 0.05 m apart are connected to 12 V .

(a) Show that the value of the electric field strength between the plates is 240 , and state its unit.

$$
E=\frac{V}{d} \quad E=\frac{12}{0.05} \quad E=240 \mathrm{Vm}^{-1}
$$

Unit: $V \mathrm{~m}^{-1}$
(b) On the diagram above, draw the electric field lines to represent the field between the plates.

```
If you need to redraw your response,
``` use the diagram on page 8.
(c) Use physics principles to explain how the electric force on an electron would vary as it moved from the negative plate to the positive plate.
The electic force on an electron as it moves from the negatue plate to the paltive plate will be constant the whole time belause \(F=E q\). The charge of an election Jalway \(-1.6 \times 10^{-19}\) (and the electric field whength)s constant be caule \(E=\frac{V}{d}\) voltage and distance between the platel hal not changed. Thus, since e and \(q\) are the same as the electron morel. the electnc forle on the electron is asso constant.
(d) An electron is moved from point A to point B , as shown below.

(i) Calculate the change in electric potential energy as the electron moves from point A to point B on the diagram opposite below.
\[
\begin{aligned}
\Delta E p & =E q d \\
& =240 \times-1.6 \times 10^{-19} \times 0.05 \\
\Delta E_{p} & =1.92 \times 10^{-18} \mathrm{~J}
\end{aligned}
\]

The electron is now moved 0.05 m from point C to point D .

(ii) What is the change in electrical potential energy as the electron moved from point C to point D ?
\[
\begin{aligned}
\Delta E P & =E a d \\
& =240 \times-1.6 \times 10^{-19} \times 0 \\
\Delta E P & =0 \mathrm{~J}
\end{aligned}
\]
(iii) Use physics principles to explain any difference in the change in electrical potential energies found in parts (i) and (ii).
\[
\begin{aligned}
& \text { In }(i) \text {, the } \Delta \text { Ep was } 1.92 \times 10^{-18} \mathrm{~J} \text { becaule work was dine } \\
& \text { byanexternal force to push the electron towards the } \\
& \text { negative piate and thus gains electrical potential energy } \\
& \text { which would conven into Ex it the electron il releated. } \\
& \text { However in (ii), the electron is not moving in (paralle)) to the } \\
& \text { electhi field so it do es not gain any electrical potential energy } \\
& \text { belause work is not done to pushit against the electhc } \\
& \text { field or electrostatic tone. }
\end{aligned}
\]

\section*{QUESTION TWO: CIRCUITS}

A simplified version of the circuit in a camping oven is shown below. The oven consists of two sections.

(a) The top section has an element with \(6.2 \Omega\) resistance and a lamp with \(4.2 \Omega\) resistance.

\(4.2 \Omega\)

Show that the total resistance of the top section is \(2.5 \Omega\).
\(R_{T}=\left(\frac{1}{6.2}+\frac{1}{4.2}\right)^{-1}\)
\[
R_{T}=2.5 \Omega
\]
(b) Calculate the current flowing from the power supply to the oven when both sections are working. \(I_{T}=V_{T} / R_{T}\) \(I_{T}=12 / 5.28\) \(I_{T}=2.27 \mathrm{~A}\)
(c) While both sections are working correctly, the lamp in the bottom section develops a fault and its resistance decreases.
Use physics principles to explain what happens to the brightness of the other lamp.
when the lamp in the bottom section develops a fault, it reilstance decreares
(e.g. \(+03 \Omega\)). The total resistance of the circult decrearel from \(5.28 \Omega\) to \(4.7 \Omega\). since supply voltage II the same, the to tal current increales from 2.27 A 2.55 A . Theresore, the top section draws more voltage from 5.675 V to 6.375 V and the bulb also draw) more curnent as total current has increaled. So current through the bulb in the top section increace) from 1.35 A to 1.52A. Since curent and voltage through the lamp/bulbin the top section increased, \(P=\) IV so power increales and power defermines brightnesi thus the bhightness of the lamp increares! the power of bulb intop increared from 7.66 W to 9.69 W .
(d) The lamp in the bottom section now stops working.

Calculate the amount of energy converted to heat in two minutes by the \(8.2 \Omega\) resistor.
\begin{tabular}{rl}
\(P=\frac{\Delta E}{t} \quad P\) & \(P V \quad V=1 R\) \\
& \(R_{T}=10.7 \Omega \quad I_{T}=12 / 10.7=1.12 \mathrm{~A}\) \\
\(P\) & \(=1^{2} R\) \\
\(P\) & \(=1.12^{2} \times 8.2 \quad\) Through \(8.2 \Omega\) \\
\(P\) & \(=10.3 \mathrm{~W}\) \\
\(P\) & \(=\Delta E / t\) \\
\(\Delta E=P \times t\) \\
\(\Delta E\) & \(=10.3 \times 120\) \\
\(\Delta E\) & \(=1236 \mathrm{~J}\)
\end{tabular}

\section*{QUESTION THREE: ELECTROMAGNETISM}

The diagram below shows a metal axle that is free to roll on two parallel metal rails. The rails and the axle are in a magnetic field. The ends of the rails are connected to a 120 V power supply.
\[
\begin{aligned}
\text { Strength of magnetic field } & =8.10 \times 10^{-3} \mathrm{~T} \\
\text { Length of axle } & =0.950 \mathrm{~m} \\
\text { Distance between parallel metal rails } & =0.840 \mathrm{~m} \\
\text { Width of magnetic field } & =1.20 \mathrm{~m} \\
\text { Total effective resistance } & =42.1 \Omega \\
\text { Voltage of power supply } & =120 \mathrm{~V}
\end{aligned}
\]

Source: https://upload.wikimedia.org/ wikipedia/commons/7/76/Rollingstock_axle.jpg
(a) Draw an arrow on the diagram above to show the direction of the electromagnetic force that acts on the axle when the power supply is switched on.
If you think the direction of the force is out of the page, into the page, or there is no force, state this clearly.
(b) Calculate the strength of the magnetic force on the axle when the power supply is turned on. \(F=B I L\)
\[
\begin{aligned}
& F=8.1 \times 10^{-3} \times 2.85 \times 0.84 \\
& F=0.02 \mathrm{~N}
\end{aligned}
\]
(c) The power supply is removed, and the metal axle is given a push so that it is moving to the right at \(3.10 \mathrm{~m} \mathrm{~s}^{-1}\), as shown in the diagram.

(i) Clearly mark the negative end of the axle on the diagram above.
(ii) Calculate the voltage induced in the axle immediately after it is set moving.
\[
\begin{aligned}
V=B r L \quad V & =8.1 \times 10^{-3} \times 3.1 \times 0.95 \\
V & =0.024 \mathrm{~V}
\end{aligned}
\]
(d) With the power supply still disconnected, a wire is connected between the rails, and the axle is given a push so that it is moving to the right at \(3.10 \mathrm{~m} \mathrm{~s}^{-1}\).

Describe the motion of the axle after it is set moving.
The axie will roll but it will slow down until it comer to a stop.

Justify your answer using electromagnetism physics principles.
When the axie is pushed, the electrons inside the axie will expenence a force \(F=B q y\) becaule they are moving in a magneticfield. The electrons movetothe top, leaving positive, on the bottom. Therees a teparation of charges thusan potential difference/ induced voltage. The wire between the ralls allows eurrent to flow from positive end to negative end the iong way(ant-clockcwise) as it allowi a complete arcult for current to flow. now therpisan induled current, there will be a corentz forle on the axie becauce \(F=B\) IL and this oppoles the axiel motion, slowing it down. When the axie stops and reaches oms-1, the indured voltage and current will also alcappear and the axie becomesstationery.

\section*{SPARE DIAGRAMS}

If you need to redraw your response to Question One (b), use the diagram below. Make sure it is clear which answer you want marked.

Extra space if required.
QUESTION NUMBER Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required.
Write the question number(s) if applicable.
\begin{tabular}{|c|c|c|}
\hline Standard & 91173 & Total score 24 \\
\hline Q & Grade score & Marker commentary \\
\hline 1 & E8 & \begin{tabular}{l}
1a: The candidate correctly calculated the electric field strength and supplied a correct unit. (a) \\
1b. The candidate correctly drew the parallel and evenly spaced arrows going downward between the plates. The arrows left and entered the plates at right angles. There were curved field lines at the end of the plate. (m) \\
1 c : The candidate explains why the force on a n electron is constant. (m) \\
1d. i. The candidate has correctly calculated the change in electro-potential energy. \\
ii. The candidate has clearly stated 0 J . \\
iii. The candidate has clearly linked work is only done when the electron moves parallel to the field and not when it moves perpendicular to the field. (ee) \\
The candidate scored e,e,m,m,a making E8 for the question.
\end{tabular} \\
\hline 2 & E8 & \begin{tabular}{l}
2a: The candidate has correctly used the formula for adding resistors in parallel to get the required answer. (a) \\
2 b . The candidate has correctly calculated the total current in the circuit. (m) \\
2c. The candidate has described the effect the faulty lamp would have on the total resistance of the circuit and how this would affect the circuit current given the supply voltage was constant. They then link this to how the voltage of the top lamp would change and how the power and hence brightness of the top lamp would change. (e) \\
2d. The candidate has correctly found the energy output.(e) The candidate scored e,e,m,a making E8 for the question
\end{tabular} \\
\hline 3 & E8 & \begin{tabular}{l}
3a: The candidate has correctly identified the direction of the force by drawing an arrow to the left. (a) \\
3b: The candidate has correctly used \(\mathrm{F}=\mathrm{BIL}\) to calculate the force on the axle. (m) \\
3c: The candidate has correctly identified the negative end of the axle and used \(V=B v L\) to find the voltage. (e) \\
3d: The candidate has correctly identified that a voltage I induced across the axle and because there is a circuit a current will flow. They also state that the because there is a current there will be a force that opposes the motion. (e) \\
The candidate scored e,e,m,a making E8 for the question
\end{tabular} \\
\hline
\end{tabular}```

