

91523

Level 3 Physics 2023
 91523 Demonstrate understanding of wave systems

Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of wave systems.	Demonstrate in-depth understanding of wave systems.	Demonstrate comprehensive understanding of wave systems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Booklet L3-PHYSR.
In your answers use clear numerical working, words, and/or diagrams as required.
Numerical answers should be given with an appropriate SI unit.
If you need more room for any answer, use the extra space provided at the back of this booklet.
Check that this booklet has pages 2-8 in the correct order and that none of these pages is blank.
Do not write in any cross-hatched area (
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

QUESTION ONE: SAM'S VIOLIN

Assume that the speed of sound in air is $342 \mathrm{~m} \mathrm{~s}^{-1}$.
A violin is a stringed instrument onto which the strings are fixed at both ends. The fixed points are 0.331 m apart. Sam plays the violin, making the strings vibrate by pulling and pushing a bow across the strings.

One string (called the "G") is arranged to play a fundamental frequency of 196 Hz .
(a) Calculate the speed of the wave that travels along the string.
https://stock.adobe.com/nz/ search?k=lady+playing+violin
(b) Analysis of the sound produced by the vibrating string shows that it also vibrates at 392 Hz and 588 Hz .

State the harmonic that causes the vibration at 588 Hz .
Your answer should include a sketch that shows the location of the nodes and antinodes.

(c) Sam plays her violin (with a fundamental frequency of 196 Hz) as she sits on a moving trailer. The trailer is moving at $5.30 \mathrm{~m} \mathrm{~s}^{-1}$ directly towards microphone A .

Abstract

Sources: https://www.freepik.com/premium-vector/young-woman-playing-violin-cartoon-character-violinist-playing-classical-music-vector-illustration-isolated-white-background_21596785.htm www.freepik.com/free-photos-vectors/microphone-clip-art

Calculate the frequency recorded by microphone A.

$$
\begin{aligned}
& f^{\prime}=f \frac{v_{w}}{v_{w}-v_{s}} \\
& f^{\prime}=196 \frac{342}{342}-5.3 \\
& f^{\prime}=199 \mathrm{~Hz}
\end{aligned}
$$

(d) Microphone B is directly behind the moving trailer, whereas microphone A is directly in front of the moving trailer.

Explain how the motion of the trailer with Sam sitting on it playing the violin affects:

- the frequency of the string
- the speed of the sound in the air
- the wavelength of the sound in the air in front of and behind the violin
- the frequencies detected by microphones A and B.

The velocity of the trailer causes each succesive wavefront to be created closer to the last as Sam moves towards microphone A. This Causes fer more haves to be observed in the Same Distance Cursing a bunching effect relative to the microphone A. As V is constant an observed in decrease in d will chase mic a to hear a higher frequency of the String as $V=f d$. Sam is moving away from mic is which causes each wavefront to be produced further a nay than the last relative to mic B. An observed

QUESTION TWO: VIOLIN TUNING
On a hot day, the violin easily goes out of tune - Sam has to adjust the tension in the string to keep the "G" string so that it still vibrates at 196 Hz .
(a) Describe what happens to the fundamental frequency of the string when the string gets longer (and nothing else changes).
node node means that $\hat{\lambda}=2 L$
As $t=2 L$ if L increases the fundamental A will increase. $A S V=f d$ on increased λ^{1} thdament manse a decrease in the fundamental frequency
(b) Sam uses a tuning fork that will always vibrate at 196 Hz . She plays the string while sounding the tuning fork and hears a beat.

- Describe what is meant by a beat.
- Explain why beats are heard.

A Beat is formed when two Sources produce Sound haves at different frequencys. This causes the two haves to be in incootient haves to be in and out of phase at varying intervals. when they are in phase they will Constructively integer to form a load Sound and when they are out of phase they will destructively inteter to form a quiet Sound. Each beat - A Sound with varying incostent and loud and quiet sands heard- will be Caused by one difference in frequency $\left(H_{z}\right)$. Sam is playing a different frequency (Hot day) than the tuning fork so she is hearing beats.
(c) Sam hears a beat of 2.1 Hz .
(i) Determine the possible frequencies at which the string is vibrating.

$$
\begin{aligned}
& f_{b}=f_{1}-f_{2} 196-2.1=193.9 \mathrm{H}_{2}=194 \mathrm{~Hz} \\
& \text { Sher or } 196+2.1=198.1 \mathrm{~Hz}=198 \mathrm{~Hz}
\end{aligned}
$$ Beats con occur in any direction in the difference chare of frequency as they are conses by a the difference in frequency.

She increases the speed of the wave along the string by increasing the tension in the string and the beat frequency increases.
(ii) Use this information to determine the frequency at which the string was vibrating before adjustment.
the Beat frequencies increasing means that the difference in frequencies is getting larger. Thefefore tans the initial frequenting must of been larger than 196 there fore the frequency of the string must of been
(iii) Explain what Sam must do to get the string to vibrate at 196 Hz .198 Hz .

(iv) State how she will know when the string is vibrating at 196 Hz .

The tho ines Sources will be in phase So no beats will be heard.
(d) When Sam plays a frequency of 564 Hz near a wine glass, the wine glass rattles on the shelf.

Give an in-depth explanation of this phenomenon by:
(i) describing the phenomenon
(ii) explaining how she might stop the wine glass from vibrating when she plays the violin. Resonance is when the driving frequency applied to on object matches the natal frequency. This Causes every to be added to the amplitude until it reaches its max amplitudeas all other energy is lost to heat. Sam is playing the violin at a for the resosnant frequency that causes resonance of the wine glass (increase amplitude causes it to
vibouter Stater) So by playing a different frequency She could not add apply a driving bore a. - the retral frequents of the wine glass winch would Stop resonance which mould cause fer the amplitude Physics 91523, 2023 of the wine glass to decrease and stop vibrating

QUESTION THREE: DIFFRACTION GLASSES
At a fair, children are buying "Rainbow Glasses" made of diffraction gratings in a cardboard frame.
Steve shines a laser pointer through one of the diffraction gratings onto a wall. The laser pointer produces light with a wavelength of $643 \mathrm{~nm}\left(6.43 \times 10^{-7} \mathrm{~m}\right)$. The light makes a pattern on the wall, with a bright red spot at the centre, and with slightly dimmer red spots either side.
The wall is 1.43 m from the grating. The distance from the central bright spot to the second slightly dimmer spot is 1.75 m .

Source: https://mindsetsonline.co.uk/shop/ diffraction-glasses/

(a) Describe diffraction.

When haves ace stone throoghe-Stits to pass through a "slit" and bend.
(b) Give an in-depth explanation why this pattern is observed by:

- explaining how diffraction and interference cause bright spots
- explaining why there are large sections where there is no light between the bright spots.

Diffraction causes the haves to travel towards the al having of spread a from travelimen through slits. hall having of Spread out. Because there are matiple haves bsoarees the haves con have a path differ encel phase difference and inteter or be in phase. When $n=1$ the are in phase so will constructively inteter to form bright spots. There are alot of waves produced with diffraction grating so when $h \neq 1$ there will be a dark region. This is because Awhen $n \neq 1$ there is a path difference. ASmall path difference em
(c) Calculate the slit separation in the grating.

$$
\text { Catalase sin sis separation in the gaines. }=\frac{\left(6.43 \times 10^{-7}\right)(1.43)}{\frac{1.75}{2}}=
$$

(d) When the children look at a spot of white light through the glasses, they see the white spot with spectra on either side (which they describe as "rainbows").

Give an in-depth explanation of this phenomenon by:

- describing where the spectra will occur
- explaining the position of the colours in the spectra
- explaining why they are in these locations.

Include a labelled sketch to show the positions of different coloured light in the space below.
Space for labelled sketch:

$$
\begin{aligned}
& \text {-o red } \\
& n=1=\text {-orange } \\
& \cdots \text { vier } \\
& \quad \text { central maxima }
\end{aligned}
$$

There is no path difference at the first maxima: This causes all the spectra of light to Constructively intefer to form a recombinant white light. For the first n each color of light hill form its an bright Spot. This is because the each colour of light has a different it so a different path difference. light with the Smallest par th difference will be in phase' to constructively the smallest angle so form a bright spot fpo from the central maxima first. As the t of light increases and the path difference, the light will be in phase at an increasing angle from the where it will constructively intefer to form a centring bright spot. This will cause for each n a complete Spectra of bright spots beginning from the smallest c color of light upto the largest. This is due to the angle they reach being in phase fer each color increase with A of colour benue of the path difference This pattern hill repeat itself fer each n.
decrease in the number of waves in the same distant causes there to be an increased λ relative to mic B as v is constant. $V=f r$, So an increase in λ will cause for mic B to observe a lower frequencij than what Sam is playing. Sam experiences no relative velocity so hill hear the actual frequency.
QU C iii) $V \propto \sqrt{T}$ So Sam must decrease the tension in order to decrease the velocity. The decrease in velocity witt cause and a Constant d will cause a decrease in the f as $v=f d$. The frequency sam is playing is higher soasdecreasing the tension will decrease the f, the frequency can be decreased from 198 Hz to 196 Hz

Q3B Cause deconstructive inteferance as it is the result of all haves intefering. Destructive inteferance causer dork regis spots. The region of dork spots is as destructive inteferance can occur with a small path difference $(n \neq 1)$ as it istle result of all haves intefering and there ore mary huns produced in diffraction grating. This is because each Slit, causes diffraction which produces many haves. lots of Slits

Standard	91523	Total score 23
Q	Grade score	Marker commentary
1	E8	The motion of the trailer producing wavefronts further from each previous wavefront is supported by the decrease in the number of waves in the same distance. This could have been improved upon by stating that as the wave and the vehicle are moving in opposite directions the distance between the wavefront and the vehicle when the next wavefront is emitted, is greater than it otherwise would have been had the vehicle been stationary.
2	E8	The explanation clearly describes that as the beat frequency increases the difference between the two frequencies increases. As the frequency is increasing as the tension is increasing this can only occur if the string frequency is 198.1 Hz . Clear explanation of Resonance caused by the driving frequency matching the natural frequency and causing energy and hence amplitude to increase.
3	E7	In addition to identifying that waves that have a path difference of exactly and whole number of wavelengths will result in waves being exactly in phase. The candidate has described that with many sources, a small path difference ($n \neq$ integer values) will result in destructive interference from the many waves. The approximation of $n \lambda=\frac{d x}{L}$ is used, rather than recognising that as the angle to the maxima is large, the approximation of $\sin \theta=\tan \theta$, is not valid.

