

Level 3 Physics 2023
 91523 Demonstrate understanding of wave systems

Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of wave systems.	Demonstrate in-depth understanding of wave systems.	Demonstrate comprehensive understanding of wave systems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Booklet L3-PHYSR.
In your answers use clear numerical working, words, and/or diagrams as required.
Numerical answers should be given with an appropriate SI unit.
If you need more room for any answer, use the extra space provided at the back of this booklet.
Check that this booklet has pages 2-8 in the correct order and that none of these pages is blank.
Do not write in any cross-hatched area (
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

QUESTION ONE: SAM'S VIOLIN

Assume that the speed of sound in air is $342 \mathrm{~m} \mathrm{~s}^{-1}$.
A violin is a stringed instrument onto which the strings are fixed at both ends. The fixed points are 0.331 m apart. Sam plays the violin, making the strings vibrate by pulling and pushing a bow across the strings.
One string (called the "G") is arranged to play a fundamental frequency of 196 Hz .
(a) Calculate the speed of the wave that travels along the string.

https://stock.adobe.com/nz/ search?k=lady+playing+violin
$0 \lambda=2 L$
\square
(b) Analysis of the sound produced by the vibrating string shows that it also vibrates at 392 Hz and 588 Hz .

State the harmonic that causes the vibration at 588 Hz .
Your answer should include a sketch that shows the location of the nodes and antinodes.

\qquad

p

(c) Sam plays her violin (with a fundamental frequency of 196 Hz) as she sits on a moving trailer. The trailer is moving at $5.30 \mathrm{~m} \mathrm{~s}^{-1}$ directly towards microphone A .

Sources: https://www.freepik.com/premium-vector/young-woman-playing-violin-cartoon-character-violinist-playing-
classical-music-vector-illustration-isolated-white-background_21596785.htm
www.freepik.com/free-photos-vectors/microphone-clip-art
Calculate the frequency recorded by microphone A.
$f^{\prime}=f \frac{V_{u}}{V_{w I S}}$ moving touavds A so $f^{\prime}=f \frac{V_{u}}{V_{w}-V_{s}}$ $V_{w}=342 \mathrm{~ms}^{-1} V_{s}=5.3 \mathrm{~ms}^{-1} \quad f=196 \mathrm{H}_{2} \quad f^{\prime}=196 \times \frac{342}{342-5.30}$ $f^{\prime}=+44 \mathrm{~Hz} \quad 199 \mathrm{~Hz}$
(d) Microphone B is directly behind the moving trailer, whereas microphone A is directly in front of the moving trailer.

Explain how the motion of the trailer with Sam sitting on it playing the violin affects:

- the frequency of the string \neg the same
- the speed of the sound in the air \rightarrow same
- the wavelength of the sound in the air in front of and behind the violin in trouts be hint \downarrow
- the frequencies detected by microphones A and $\mathrm{B} . \geqslant \mathrm{Af} \mathrm{B}$

The tuequncy of the string changes because of the most motion of the trimilergwick causes the Do poler eftectio apply. As the a toiler moves A the uavefrouts in front of som compress, causing a shorter wquelonsth in front of the vidiavioling So $A_{\text {nacre phone A detects }}$ a higher frequency the of the string Betriud the trailer, the wo distance between wavefionts increases, so the wavelength increases, and shicrophone B detects a loner frequency.
Dunces temperature or trahtals of the string change, the
speed of seump in dis remains unchained. speed of seump in dis remains unchanged.

QUESTION TWO: VIOLIN TUNING

On a hot day, the violin easily goes out of tune - Sam has to adjust the tension in the string to keep the " G " string so that it still vibrates at 196 Hz .
(a) Describe what happens to the fundamental frequency of the string when the string gets longer (and nothing else changes).
As the string gets conger, the wavelength increases. since $V=f \lambda$, it λ increases, fut V stays constant e, then f will de(vese, so the fundeluental sequence trequengs) will decrease.
(b) Sam uses a tuning fork that will always vibrate at 196 Hz . She plays the string while sounding the tuning fork and hears a beat.

- Describe what is meant by a beat.
- Explain why beats are heard.

A beat is the the oscillation in loudness of waves at a simile, frequency, but with the same amplitude.
Beats are heard as the naves die only slightly but of phase This tout causes periodic unangl in constructive aldedestrutive inter terence. A) the waves interfere constructively, the asap waste superpaju and tree amplitude increases, se does the loudness. When waves intedere destructively, the superposition de crees somplitude and the loudness) decreases.
(c) Sam hears a beat of 2.1 Hz .
(i) Determine the possible frequencies at which the string is vibrating.

$$
\begin{aligned}
& 196-2.1=193.2199 \mathrm{~Hz} \quad(193.9 \mathrm{kz} \\
& 196+2.1=198 \mathrm{~Hz} \quad(198.1 \mathrm{~Hz})
\end{aligned}
$$

She increases the speed of the wave along the string by increasing the tension in the string and the beat frequency increases.
(ii) Use this information to determine the frequency at which the string was vibrating before adjustment.

(iii) Explain what Sam must do to get the string to vibrate at 196 Hz .

Since the treat o Frequency increases as ,he tightens the string, X Sam should loosen the string as it would flow down the vibration and decrease frequency,
(iv) State how she will know when the string is vibrating at 196 Hz .

The will know When the sting vibrates off $196 \mathrm{H} \rightarrow$ when she does not hor bouts las the voting and fork will Vibrate at the same frequency
(d) When Sam plays a frequency of 564 Hz near a wine glass, the wine glass rattles on the shelf.

Give an in-depth explanation of this phenomenon by:
(i) describing the phenomenon
(ii) explaining how she might stop the wine glass from vibrating when she plays the violin.

This phenomenon is called Resonance. It occurs when two objects vibrate at the same frequency, which is a natural trequeacy, of whin the wavelength 'fits' the sheep

could chasse the frequencies of the souring take virilism weates by lowering the start ting
 frequency) as the ty equences prayed would no longer tit the GuLas) cousin it te vibuater.

QUESTION THREE: DIFFRACTION GLASSES
At a fair, children are buying "Rainbow Glasses" made of diffraction gratings in a cardboard frame.
Steve shines a laser pointer through one of the diffraction gratings onto a wall. The laser pointer produces light with a wavelength of $643 \mathrm{~nm}\left(6.43 \times 10^{-7} \mathrm{~m}\right)$. The light makes a pattern on the wall, with a bright red spot at the centre, and with slightly dimmer red spots either side.
The wall is 1.43 m from the grating. The distance from the central bright spot to the second slightly dimmer spot is 1.75 m .

Source: https://mindsetsonline.co.uk/shop/ diffraction-glasses/

(a) Describe diffraction.

Diffraction occurs when wavetronts bend the to ϕ barrier, causing the wavefronts to curve.
(b) Give an in-depth explanation why this pattern is observed by:

- explaining how diffraction and interference cause bright spots
- explaining why there are large sections where there is no light between the bright spots.
 diffraction grating, they will interetere within each other. In some places, the waves interfere constructively bund will form antinoddl lines, sw where brightacss is the thiglest, which will result in bright spots on lither side of the central maxima. The large sections wrene there is no light are a result of nodal lines where the destructive intern inter interterence will cause tight to the waves to cancel out, so no lion will be olsenvea.
(c) Calculate the slit separation in the grating.
(d) When the children look at a spot of white light through the glasses, they see the white spot with spectra on either side (which they describe as "rainbows").

Give an in-depth explanation of this phenomenon by:

- describing where the spectra will occur \rightarrow tr is ht spot
- explaining the position of the colours in the spectra - Red erase yercu, gree, bul, indigo, violet
 soils Include a labelled sketch to show the positions of different coloured light in the space below. GUr mes α

Space for labelled sketch:

A火 The specter will occur at antino dal lines, where $u \neq$ is a whole number. This is caused by q greater math difference in light. Since $d \sin \theta \pm n \lambda$ if λ increases, so will θ. Agreater will cause list the sped different wave lengths of light to have quedter path difference. Since red light has the highest wavelength, it will experience the kiskingt diffraction and its seth difference oxen. This weans test red light will always be on the outermost fringe of the spectra. Violet light has the lowest wavelength so 4 loesser path $^{\text {difference and it will apple on the innermost }}$ fribble. The other wavelengths will appear int me ROYGBiV , equate,

Extra space if required.
Write the question number(s) if applicable.

Standard	91523	Total score $\quad 15$
Q	Grade score	Marker commentary
1	M5	$3^{\text {rd }}$ harmonic correctly identified and drawn. Frequency toward microphone A correctly calculated. Candidate does not show a causation between the wavelength decreasing and the frequency increasing (while the speed of sound in air is constant) or vice versa. This is most easily done by linking to $v=f \lambda$.
2	M5	Beats are correctly described, but there is no mention of why the interference is constructive or linking this to the volume. It is incorrectly stated that as the waves are slightly out of phase that there is both constructive and destructive interference. The explanation for 2 cii is restating the information given in the question without providing a logical causation. 2d Identifies Resonance correctly, but is unclear to the link to the natural frequency of the wine glass. The building of energy and hence a maximum amplitude is not mentioned.
3	M5	The explanation in 3b shows no link in describing why the interference is constructive. The approximation of $n \lambda=\frac{d x}{L}$ is used, rather than recognising that as the angle to the maxima is large, the approximation of $\sin \theta=\tan \theta$, is not valid.

