Mana Tohu Mātauranga o Aotearoa
New Zealand Qualifications Authority

Level 1 Mathematics and Statistics RAS 2023

91947 Demonstrate mathematical reasoning

EXEMPLAR

QUESTION ONE

(a) Find the value of T in the formula $T=\pi \sqrt{\frac{h \sin x}{g}}$ when $h=2.5, g=9.81, x=75^{\circ}$, giving your answer correct to four decimal places.

$$
T=\pi \sqrt{\frac{2.3 \sin (75)}{9.81}}=1.5587 . \text { (41dp) } \quad \text { (Use calculator) }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
(b) The diagram below shows the top view of a rectangular box containing 12 cylindrical tins. The tins are all just touching each other and the sides of the box. Each tin is 15 cm high. Each tin has a label going all the way around its side, but not on the top or bottom. The box has dimensions of 27 cm by 36 cm by 15 cm .

Source: https://www.thewarehouse.co.nz/p/watties-condensed-tomato-soup-420g/R930548.html
(i) Find the total area of the labels of all of the tins in the box.

SA cylinder= $2 \pi r h+2 \pi r^{2}$.
since no top or bottom: $=-2 \pi r^{2}$. $=2 \pi r h$.
radius: $36 \div 4=9 \div 2=4.5 \mathrm{~cm}^{2}$. height: 15 . So $2 \pi(4.5)(15)=135 \pi$.
$135 \pi \times 12=1620 \pi$.
$1620 \mathrm{~T}=5089.38 \mathrm{~cm}^{2} \cdot(2 \mathrm{dp})$
(ii) A different size rectangular box to part (i) has height 15 cm .

The box will also contain 12 cylindrical tins, which are all just touching each other and the sides of the box. The layout of the 12 tins within this box will be the same as in part (i).
Each tin is 15 cm high, and with radius $p \mathrm{~cm}$.
Show that the proportion of the volume in the box that is NOT occupied by the tins is $\frac{(4-\pi)}{4}$.
Total length =bp, width =bp. volume box $=h \times w \times 1 . \quad 1=15$
$8 p \times 6 p \times 15=720 p^{2}$.
Volume cylinder: $\pi r^{2} \hbar$. $r=p$. So $\pi(p)^{2}(15)=15 p^{2} \pi \cdot x \mid 2=180 p^{2} \pi$.
$\frac{\left(720 p^{2}-180 p^{2} \pi\right)}{720 p^{2}+180 p^{2} \pi}$. so factor out p^{2}.
$\frac{P^{2}(720-180 \pi)}{P^{2}(720)}$
so $\frac{720 \cdot 180 \pi}{720}: 180$ 2oth-sites
$=\frac{4-\pi}{4} \quad \nabla \quad$ factor owl $180=\frac{180(4-\pi)}{180 \times 4}$
(c) Two ships leave Port P at the same time.

Ship W sails 70 km on a bearing of 030° to reach point Alpha.
Ship V sails 140 km on a bearing of 120° to reach point Beta.

(ii) Find the bearing of Alpha from Beta, shown as angle x in the diagram opposite.

Show your working clearly.
t's on st line 180°. So North $B=180^{\circ} . \quad 16 \times B=90^{\circ}$. Fart
$\operatorname{Iun}^{-1}\left(\frac{10}{121.2141}\right): 30^{\circ} \therefore 16 \times p$.
We $\operatorname{Tan}^{-1}\left(\operatorname{Tan}(y)=\frac{86.2244}{130.622}: \operatorname{Tan}^{-1} \frac{86.294}{130.622}: y=33.144^{\circ}\right.$
L around point $=360^{\circ}$. $360.0 n s=326.56$ so $\therefore x=326.36^{\circ}(2 \Delta p)$
(iii) The speed of ship W is $k \mathrm{~km} /$ hour, where k is a positive constant.

The total time taken for the ships to complete their journeys to Alpha and Beta was four hours.

Find the speed of ship V, giving your answer in terms of k.
Average speed $=\frac{\text { Total distance }}{\text { Tolar time }}$
Ship V went from port p to beta at 140 km .
Ship W went from port P' to Alpha at 70 hm hour oud at $k \mathrm{hm}$.
So Ship w time $=\frac{\text { distance }}{\text { speed }} \frac{70}{k}$ is time it took so $4-\frac{70}{k}$ is time that ship v con use.
$41-\frac{10}{k}=$ Time available. distance: 140 . speed $=\frac{\text { distance }}{\text { time }}=$
$\frac{140}{4-\frac{70}{k}}=$ speed

$$
\frac{4}{1}-\frac{70}{k}=\frac{4 k-70}{k 2}
$$

So \therefore speed of ship $V=\frac{140}{4-\frac{-0}{k}}$, simplify it $=\frac{140}{1} \div \frac{4 k-70}{k}=$
$\frac{140}{1} \frac{1 k}{4 k-70}=\frac{140 k}{4 k-70}$

QUESTION TWO

(a) The diagram below shows the top of a table which is in the shape of a regular octagon. Length $A Z=120 \mathrm{~cm}$. Point Z is at the centre of the octagon.

(i) Show that the size of v, angle ZAB , is 67.5°.

Show your working clearly.
L's in octagon sum: $(8-2) 180=1080 \div 8=135$. Bisects $=135 \div 2=67.5^{\circ}$.
(ii) Find the area of the octagon.

$$
\frac{1}{2} \text { base }=120 \cos (67.5)=215.9222 \mathrm{~m}^{2} \text { so fill base }=91.844 \text {. }
$$

$110.810 / A=\frac{1}{2} b \times h$
91.844 so $\frac{110.866 \times 91.844}{2}: 5091.188 \mathrm{~cm}^{2} \times 8$ tr $=$

$$
\begin{aligned}
& 407,29.508 \mathrm{~cm}^{2} \text { total area. (3dp) } \\
& \text { may be } 40,729.504 \text { due to rounding but it's } 100 \% \cdot 40,729 \cdot 50 \text {. } 2 \mathrm{dp} \text {) }
\end{aligned}
$$

(iii) Another table, made in the same style, has its top in the shape of an n-sided regular polygon. The length $\mathrm{AZ}=p \mathrm{~cm}$, where Z is at the centre of the table and A is one of the corners of the table.

Find the area of this new table top, giving your answer in terms of n and p.

So find angle sum: $\frac{(n-2) \sqrt{30}}{n}$: angle so p so use

$$
\begin{aligned}
& P \sin \left(\frac{(n-2) 80}{n}\right)=\text { length, } \\
& P \cos \left(\frac{(n-2) 180}{n}\right)=\text { base . basexz = full base so } 2 P\left(\cos \left(\frac{(n-2) 180}{n}\right)\right. \text {. (due to biseled it) } \\
& \text { Area: } \frac{1}{2} b \times h . \\
& \qquad\left(P \sin \left(\frac{(n-2) 180}{n}\right)\right)\left(2 p \cos \left(\frac{(n-2) 180}{n}\right)\right) \\
& \frac{(2)}{2}=\text { one triangle area. }
\end{aligned}
$$

So n sided polygon= multiply by n So

$$
\text { inside }=(n-2)(180)=\frac{180 n-360}{n} \text {. } 50
$$

Note:
The n docent matte posit th Whether its $n($ (working $)$
or

Mathematics and Statistics RAS 91947, 2023
(b) An isosceles triangle ABC has $\mathrm{AB}=2 x \mathrm{~cm}$ and $\mathrm{AC}=\mathrm{BC}=y \mathrm{~cm}$.

The perimeter of the triangle ABC is 100 cm .
The length of the perpendicular from C to the line $A B$ is 10 cm .

> Diagram is NOT to scale
(i) Find the length, y, from A to C .

Give your answer in terms of x.
$2 x+2 y=100$
$2 y=100-2 x$ or using pyllhgeros, $x^{2}+100-y^{2} . \quad y=\sqrt{x^{2}+100}$
$y=\frac{500-2 x}{2}=50-x \quad$ using normal algebra, one pythagetos. both valid. One simplified and other int.
Y) 40
(ii) Using Pythagoras' theorem, find the area of the triangle ABC .

Support your answer with full mathematical working. Working at back, mini Please check $x^{2}+y^{2}=10^{2}$. $\quad \frac{x \times 10}{2}$ simplified worn one an g at bottom of the buck Working there.

While perimeter: $2 x+2 y=100, \quad y=\frac{100-2 x}{2}$ page in lase Unavailable. Hren:2 4 hie
so
$x^{2}+\left(\frac{100-2 x}{2}\right)^{2}=40^{2} \cdot, \frac{(100-2 x)}{2} \frac{(100-2 x)}{2}, \frac{10000-400 x+4 x^{2}}{4}$
$x^{2}+4 \frac{4 x^{2}-400 x+10,000}{4}=100$
$\frac{4 x^{2}+4 x^{2}-400 x+10000}{4}=100$
$8 x^{2}-4000 x+10,000=400$
$8 x^{2}-2100 x+9100=0$ which is same as
$x^{2}-50 x+1200=0$
I got $x=24$ at end, last page
so area $=\frac{(10)(2(24)}{2}=240 \mathrm{~cm}^{2}$
$A^{2}+b^{2}=c^{2}, A=x, b=10, c=y, x^{2}+10^{2}=y^{2}$.
While perimeter: $2 x+2 y=100,2 x=100-2 x-y=50-x$. $x^{2}+10^{2}=y^{2} \quad x^{2}+100=(50-x)^{2} . \quad x^{2}+100=x^{2}-100 x+2160$
$100 x=2400, \quad x=24$ so $\therefore \frac{1}{2} b x h$.
$b=2 x, h=10$. $\frac{2(24) \times 10}{2}=\frac{480}{2}=240 \mathrm{~cm}^{2}$ $240 \mathrm{im}^{2}$.

QUESTION THREE

(a) (i) The table below represents points on a particular graph, G_{1}.

Find the equation of this graph.

\boldsymbol{x}	\boldsymbol{y}
1	20
2	25
2	30
4	
	5
5	5
5	5

$\begin{array}{ll}1^{\text {st }} \text { diff constant so } \quad y-y_{1}=m\left(x-y_{1}\right) \text { while } m=5 . \quad(1,20) \\ \text { Linear } & y_{1}=20=5(x-1)\end{array}$ $y=5 x+15$
(ii) The table below represents points on another graph G_{2}.

Find the equation of this graph.
$\left.\begin{array}{|c|c|}\hline x & \boldsymbol{y} \\ \hline 1 & 0 \\ \hline 2 & 4 \\ \hline 3 & 12 \\ \hline 4 & 24 \\ \hline 5 & 40 \\ \hline\end{array}\right) 12424$

2nd diff constant. Quadratic. $a=\frac{2 n d \text { dill }}{2}=2 x^{2}$ white $2=4$. $t=0 \quad$ so $\quad y=2 x^{2}+b x, \quad 0=2(1)^{2}+b(1) . \quad b=-2$
So $\therefore y=2 x^{2}-2 x$
(iii) Use algebra, to find the x-values of the two points of intersection of the graphs G_{2} and G_{1}.

Support your answer with full mathematical working.
$y=2 x^{2}-2 x, \quad y=5 x+15 . \quad 2 x^{2}-2 x=5 x+15, \quad 2 x^{2}-7 x-15=0 \quad \sum_{-10}^{-30},-7$
$\frac{(2 x-10)}{2}(2 x+3)=0$
$=(x-5)(2 x+3)=0, \quad x=5, \quad x=-\frac{3}{2}$
\qquad
\qquad
(b) Using the set of axes provided below, draw the two graphs of $y=3 x^{2}-14 x-120$ and $y=10 x+24$. (Plotted both with pencil)
Using your graphs, solve the equation $3 x^{2}-14 x-120=10 x+24$.

If you need to redraw your response, use the grid on page 12.

Table $10 x+22$

Table $y=3^{2}-14 x+120$
 Viscully seeing this, we con see that they intersect at $(-4,-16)$ and at $(12,144)$, graphs are just a visual way of solving equations, intersecting pant = Solve So \therefore solving, $x=4, x=-12$.
Proof: $3 x^{2}-14 x-120=16 x+24, \quad 3 x^{2}-24 x-144=0 \quad(3 x-36)(x+4)=0, \quad x=12, x=4$.
Rule: Intersecting paints: solving.
(c) The diagram below shows a trapezium with area of $20 \mathrm{~m}^{2}$.

All lengths are in metres.

Find the value of x.
Support your answer with full mathematical working.
area trapezium: $\frac{1}{2}(a+b) h$.

$$
=\frac{1}{2}(2 x+x+7) x
$$

$$
=\frac{1}{2}(3 x+7)(x)
$$

So $3 x^{2}+7 x=40, \quad 3 x^{2}+7 x-210=0 . \quad-120,7$

Factor then solve $\quad \begin{aligned} & 1 \\ & 2\end{aligned} 120$ | 340 |
| :--- |
| 430 | 524 7

$-8+15$
430
524
620
7
$-8+15$

So $(3 x+15)(3 x-8)=0$
3
$=(x+5)(3 x-8)=0$.
$x=\frac{8}{3}, x=-5$.
$x \neq-5$. x must >0 due to dealing with potential real life situations $\therefore x=\frac{2}{3}$

SPARE DIAGRAM

If you need to redraw your response to Question Three (b), use the diagram below. Make sure it is clear which answer you want marked.

Mathematics and Statistics RAS 91947, 2023

Extra space if required.

Write the question numbers) if applicable.

question

Tech last page for working of 2 nil.

Extra space if required.

Write the question number(s) if applicable.

$$
(50-x)(50-x)=2500-50 x-50 x+x^{2}
$$

Extra space if required.
Write the question numbers) if applicable.
Here is working.
2bii. (Use pythogerss theron, find area of triangle $A B C$.

$$
A^{2}+b^{2}=c^{2}, \quad \text { so } A=x, \quad D=10,1=y
$$

So $x^{2}+10^{2} \approx y^{2} . \quad x^{2}+100=y^{2}$.
$\begin{array}{ll}\text { White perimeter }=2 x+2 y=100 . & 2 x+2\left(\sqrt{x^{2}+100}\right) \\ \text { While perimeter }=2 x+2 y=100 . & 2 y=100-2 x . \quad y=\frac{100-2 x}{2}=50-x .\end{array}$ $x^{2}+10^{2}=y^{2}$. So $x^{2}+100=(50-x)^{2}=x^{2}+100=\left(x^{2}-100 x+2500\right)$
so $x^{2}+100=x^{2}-100 x+2500$.

$$
\begin{aligned}
& -x^{2}-100-x^{2}+100 x \\
& +100 x
\end{aligned}
$$

$$
100 x=2400 . \quad x=24
$$

Area $=\frac{1}{2} 2 h$.
91947

$$
b=2 x, h=10 . \quad \frac{2(24)(10)}{2}=240 \mathrm{~cm}^{2}
$$

Excellence

Subject: Mathematics and Statistics RAS

Standard: 91947

Total score: 24

Q	Grade score	Marker commentary
One	E8	(a) Correct answer. (b)(i) Correct answer. (b)(ii) Provided correct volume of space. The candidate developed a chain of logical reasoning to calculate the volume of the box, NOT occupied by the tins in this box, with the radius of the tins given as a variable, thus forming a generalisation. (c)(i) correct answer with working. (c)(ii) correct bearing. (c)(iii) provided correct expression for SV. The candidate formed a generalisation to determine the speed of a ship, given the speed of another ship and the time taken for both ships to travel a given distance.
Two	E8	(a)(i) Clear and justified working to show that $v=67.5^{\circ}$. (a)(ii) Correct answer. (a)(iii) Finding a correct expression for the area of the whole polygon table. Candidate extended mathematical methods to solve the problem of providing a generalisation to determine the surface area of a polygon with n sides, given a length from the centre. Minor error ignored. (b)(i) Found y in terms of x. (b)(ii) The candidate used a chain of logical reasoning to correctly calculate the area of a triangle, extending mathematical methods to solve a problem.
Three	E8	(a)(i) Correct answer. (a)(ii) Correct answer. (a)(iii) Found both values of x. (b) Both intersection points identified accurately and with evidence of use of an accurate graph. The candidate extended mathematical methods (graphing) to solve an equation. (c) $x=\frac{8}{3}$ with evidence that $x=-5$ has been ignored. The candidate formed a generalisation to use the area of a trapezium and extended mathematical methods to solve a problem.

