## Assessment Schedule - 2020

Mathematics and Statistics: Apply algebraic methods in solving problems (91261)

## Evidence

| $\begin{array}{c}\text { Q } \\ \text { ONE }\end{array}$ | Evidence | Achievement (u) | $\begin{array}{c}\text { Achievement } \\ \text { with Merit (r) }\end{array}$ | $\begin{array}{c}\text { Achievement } \\ \text { with Excellence (t) }\end{array}$ |
| :---: | :--- | :--- | :--- | :--- |
| (a) | $(6 x-5)(x+3)$ | $\begin{array}{l}\text { Correctly } \\ \text { factorised. }\end{array}$ | $\begin{array}{l}\text { Square completed } \\ \text { correctly. }\end{array}$ |  |
| (b) | $\begin{array}{l}f(x)=x^{2}+10 x+22 \\ f(x)=(x+5)^{2}-3\end{array}$ | $\begin{array}{l}\text { Substitute correctly. } \\ \text { (c)(i) } \\ 40=4^{3}-12 P \times 4+R \\ 40=64-48 P+R \\ 48 P=24+R\end{array}$ | $\begin{array}{l}\text { Find an equivalent } \\ \text { expression for } P \text { in } \\ \text { terms of } R .\end{array}$ |  |
| (c)(ii) | $\begin{array}{l}3 x^{2}=12 P \\ x^{2}=4 P \\ x= \pm \sqrt{4 P} \\ x= \pm 2 \sqrt{P} \\ x= \pm 2 P^{0.5}\end{array}$ | $\begin{array}{l}\text { Correctly solves the } \\ \text { equation to the } \\ \text { point where } \\ x=2 P^{0.5} \\ \text { OR } \quad x=2 \sqrt{P} \\ \text { OR } x= \pm \sqrt{4 P} \\ ( \pm \text { required) }\end{array}$ | Finds $x= \pm 2 P^{0.5}$ | $\begin{array}{l}\text { T1: Correct } \\ \text { working and }\end{array}$ |
| mathematical |  |  |  |  |
| statements |  |  |  |  |
| including an |  |  |  |  |
| explanation for only |  |  |  |  |
| using the negative |  |  |  |  |
| value. |  |  |  |  |$\}$


| N0 | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No response; no relevant evidence. | A valid attempt at one question. | 1 of u | 2 of u | 3 of u | 1 of $r$ | 2 of $r$ | T1 | T2 or two T1 |

NCEA Level 2 Mathematics and Statistics (91261) 2020 — page 2 of 3

| $\begin{gathered} \hline \mathbf{Q} \\ \text { TWO } \end{gathered}$ | Evidence | Achievement (u) | Achievement with Merit (r) | Achievement with Excellence (t) |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\log \left(\frac{9 y \times 4}{3 y}\right)=\log (12)$ | Correct solution. |  |  |
| (b)(i) | $\begin{aligned} & x^{2}=36 \\ & x=6 \end{aligned}$ | Correct solution. |  |  |
| (b)(ii) | $\begin{aligned} & \log _{5}\left(2 x^{2}\right)=4 \\ & 2 x^{2}=5^{4}=625 \\ & x^{2}=312.5 \\ & x= \pm 17.68 \text { (4sf) } \\ & x>0, \text { so only solution is } x=17.68 \end{aligned}$ | Combines logs in a valid way. | Finds $x$. | T1: Correct solution with negative value rejected. |
| (c) | $\begin{aligned} & \frac{(5 x+4)(2 x+1)-(3 x-4)(x+4)}{(x+4)(2 x+1)}=2 \\ & \frac{10 x^{2}+13 x+4-\left[3 x^{2}+8 x-16\right]}{(x+4)(2 x+1)}=2 \\ & \frac{7 x^{2}+5 x+20}{2 x^{2}+9 x+4}=2 \\ & 7 x^{2}+5 x+20=4 x^{2}+18 x+8 \\ & 3 x^{2}-13 x+12=0 \\ & (3 x-4)(x-3)=0 \end{aligned}$ <br> Either $x=\frac{4}{3}$ or $x=3$ <br> OR $\begin{aligned} & 5 x+4 \frac{(x+4)(3 x 4)}{2 x+1}=2(x+4) \\ & (5 x+4)(2 x+1)-(x+4)(3 x-4)=2(x+4)(2 x+1) \\ & 7 x^{2}+5 x+20=4 x^{2}+18 x+8 \\ & 3 x^{2}-13 x+12=0 \\ & (3 x-4)(x-3)=0 \end{aligned}$ <br> Either $x=\frac{4}{3}$ or $x=3$ | Begins to handle denominators in a correct way (adding the fractions using a common denominator or multiplying through by one denominator). | Correct solutions. |  |
| (d) | $\begin{aligned} & \mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=\mathrm{d} x^{2}+\mathrm{e} x+\mathrm{c} \\ & (\mathrm{a}-\mathrm{d}) x^{2}+(\mathrm{b}-\mathrm{e}) x=0 \\ & x[(\mathrm{a}-\mathrm{d}) x+(\mathrm{b}-\mathrm{e})]=0 \\ & \text { so } x=0 \text { or } x=\frac{e \quad b}{a d} \end{aligned}$ <br> One solution will always be on the $y$-axis, i.e. $x=0$. The other is $\frac{e \quad b}{a \quad d}$. Hence, there will always be one solution, and there will always be a second as long as $a \neq d$ so that this second solution is defined and $b \neq e$, so that the second is distinct from the first. <br> Accept alternative method: use of quadratic formula to derive the same results. | Sets up simultaneous equation. | Solves quadratic correctly but does not draw conclusions from the solutions. | T1: Correct working leading to one of the constraints, clearly expressed. <br> T2: Correct working leading to both of the constraints, clearly expressed. |


| N0 | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No response; no relevant evidence. | A valid attempt at one question. | 1 of u | 2 of u | 3 of u | 1 of r | 2 of $r$ | T1 | T2 or two T1 |

NCEA Level 2 Mathematics and Statistics (91261) 2020 — page 3 of 3

| $\begin{gathered} \mathbf{Q} \\ \text { THREE } \end{gathered}$ | Evidence | Achievement (u) | Achievement with Merit (r) | Achievement with Excellence (t) |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\begin{aligned} & 3^{4 x}=30 \\ & 4 x \log 3=\log 30 \\ & x=\frac{1}{4}\left(\frac{\log 30}{\log 3}\right)=0.7740(4 \mathrm{sf}) \end{aligned}$ | Expanded log form. | Correct solution. |  |
| (b)(i) | $x=W^{\frac{5}{2}} \quad 2=\sqrt{W^{5}} \quad 2$ | Correct expression. |  |  |
| (b)(ii) | $\begin{aligned} (x+2)^{\frac{2}{5}} & <20 \\ x & <20^{2.5} \quad 2 \\ x & <1786.85 \end{aligned}$ <br> So $x \quad 1786$ or $x<1787$. | Solves equation to find $x=1786.85$. | Correct solution for $x$ as a whole number. |  |
| (c)(i) | $\begin{aligned} & \text { Turnover }=(2 d+5)(101-3 d)=445 \\ & -6 d^{2}+187 d+60=0 \end{aligned}$ <br> Either $d=-0.3176$ or $d=31.48$ (4sf) <br> $d$ needs to be both positive and whole, so neither solution is valid, which means that the turnover is never $\$ 445$. | Forms the correct equation for turnover. | Finds the values of $d$. | T1: Gives a valid explanation as to why the turnover is never $\$ 445$. |
| (c)(ii) | $\begin{aligned} & (2 d+5)(101-3 d)=\mathrm{k} \\ & -6 d^{2}+187 d+(505-\mathrm{k})=0 \\ & d=\frac{\left.187 \pm \sqrt{187^{2} \quad 4(6)(505 \quad k}\right)}{2(6)} \\ & d=\frac{187 \pm \sqrt{47089 \quad 24 k}}{12} \end{aligned}$ <br> 1. Discriminant needs to be positive (so $k<1962.04$ ) <br> 2. $d$ is rational so $47089-24 k$ must be a square number <br> 3. $d$ is an integer, so $187 \pm \sqrt{4708924 k}$ must be divisible by 12 <br> 4. $d$ is positive, so $187 \pm \sqrt{47089 \quad 24 k}$ must be positive. | Rearrangement of equation set to 0 . | Finds a simplified expression for $d$. | T1: Makes ONE of the listed conclusions. <br> T2: Makes TWO of the listed conclusions. |


| N0 | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No response; no relevant evidence. | A valid attempt at one question. | 1 of u | 2 of u | 3 of $u$ | 1 of r | 2 of $r$ | T1 | T2 or two T1 |

## Cut Scores

| Not Achieved | Achievement | Achievement with Merit | Achievement <br> with Excellence |
| :---: | :---: | :---: | :---: |
| $0-7$ | $8-13$ | $14-18$ | $19-24$ |

