Assessment Schedule - 2020
Mathematics and Statistics: Apply probability methods in solving problems (91267)

$\begin{gathered} \text { Q } \\ \text { ONE } \end{gathered}$	Evidence	Achievement (u)	Achievement with Merit (r)	Achievement with Excellence (t)
(a)(i)	$\mathrm{P}($ Staff and Drove $)=0.15 \times 0.9=0.135$.	Probability correct. Tree not required.		
(ii)	P (Student and ND and would not like EV) $=0.85 \times 0.57 \times 0.4=0.1938$	Probability correct.		
(iii)	$\mathrm{P}($ Student would like EV) $=p($ Student $, ~ D, ~ E V)+p($ Student, ND, EV) $=0.85 \times 0.43 \times 0.36+0.85 \times 0.57 \times 0.6$ $=0.13158+0.2907=0.42228$ $\mathrm{P}($ Student drove if want EV$)=\frac{0.1316}{0.4223}=0.3116$ For students, P (would like EV) $\begin{aligned} & =p(\mathrm{D}, \mathrm{EV})+\mathrm{p}(\mathrm{ND}, \mathrm{EV}) \\ & =0.43 \times 0.36+0.57 \times 0.6 \\ & \quad=0.1548+0.3420=0.4968 \end{aligned}$ $\mathrm{P}($ Student drove if want $E V)=\frac{0.1548}{0.4968}=0.3116$	Either numerator or denominator correctly found. Allow consistency with their clearly drawn tree.	Correct or consistent probability.	
(iv)	$\begin{aligned} & \mathrm{P}(\text { want EV }) \\ & =0.15 \times 0.9 \times 0.52+0.15 \times 0.1 \times 0.25 \\ & +0.85 \times 0.43 \times 0.36+0.85 \times 0.57 \times 0.6 \\ & =0.0702+0.00375+0.13158+0.2907 \text { (accept) } \\ & =0.4962=49.6 \% \text { (accept decimal }) \end{aligned}$	One new probability found OR CAO	Correct or consistent probability (all 4 added). Accept working on the tree.	

(b)	Need to define x and y. For staff who want to own EV: $\begin{aligned} 0.4 \times 2 x+0.6 x & =0.49 \\ 1.4 x & =0.49 \text { so } x=0.35 \end{aligned}$ For students who want to own EV: $\begin{aligned} 0.72 \times 2 y+0.28 y & =0.43 \\ 1.72 y & =0.43 \text { so } y=0.25 \end{aligned}$ $\mathrm{P}($ want EV if Not Close $)=$ $\mathrm{P}($ Staff, NC, want EV) $+\mathrm{P}($ Student, NC, want EV) $0.15 \times 0.6 \times 0.35+0.85 \times 0.28 \times 0.25$ $=0.0315+0.0595=0.091$ P (want EV if living Close) $=\mathrm{P}($ Staff, close, want EV) $+\mathrm{P}($ Student, close, want EV) $\begin{aligned} & =0.15 \times 0.4 \times 0.7+0.85 \times 0.72 \times 0.5 \\ & =0.042+0.306=0.348 \end{aligned}$ Prob that people wanting to own EV if living close is 0.348 which is more likely [or 3.8 times $\left(\frac{0.348}{0.091}\right)$ as likely] than prob that people wanting to own an EV if not living close (0.091).	Tree diagram set up correctly with x and $2 x$ or y and $2 y$. OR CAO for x or y probabilities by trial and error.	Either x (prob Staff NC who want EV) or y (prob Student NC who want EV) found.	T1: correct x and y probabilities found OR Comparison of consistent probabilities for staff and students of wanting EV if Close and EV if NC from incorrect** values of x or y using relative risk or simple difference, with interpretation. ** as long as the doubling concept is clear on the tree, and the " x " and " y " are different. T2: Comparison of correct probabilities of wanting EV if Close and EV if NC using relative risk or simple difference, with interpretation.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	T1	T2

$\begin{gathered} \mathbf{Q} \\ \text { TWO } \end{gathered}$	Evidence	Achievement (u)	Achievement with Merit (r)	Achievement with Excellence (t)
(a)(i)	$\begin{aligned} & \mathrm{P}(150<x<165)=\mathrm{P}(-1.071<Z<0) \\ & =0.3580 \end{aligned}$	Correct probability.		
(ii)	$\mathrm{P}(x>172)=\mathrm{P}(Z>0.5)=0.3085$	Correct probability.		
(iii)	Inverse normal $\mathrm{P}(x>k)=0.90$ $k=147.06$ 90% of battery charges have a minimum distance of 147 km . Geoff is satisfied if he goes more than 147 km (147.1 or 147.06) on one full battery charge.	CAO OR Evidence of ± 1.281	Correct minimum value obtained with working and / or diagram.	
(b)	$\begin{aligned} & \mathrm{P}(x<265)=0.2 \\ & \mathrm{P}(Z<z)=0.2 \quad z=-0.8416 \\ & 0.8416=\frac{(265)}{14} \\ & \mu=276.8 \mathrm{~km} \end{aligned}$	CAO OR z-value of ± 0.8416 found.	Correct z value used but mean is incorrect	Correct mean found.

(c) Comparison of the normal distribution model in claim with the sample distribution of test drives.
Possible valid comments about similarities:

Centre

C1: Means are similar (model 280 vs $278.33(\mathrm{n}=69)$ or $274.4(\mathrm{n}=70)$ from data using frequencies of midpoints) or discusses mean likely about 280 .
C2: 47% of data is below 280 , so median must be close to (but above) 280, suggesting a ND and claim could be valid. C3: Could calculate mean using b) or similar method using inverse normal and compare.
About differences:

Spread

V1: Data has a range of 100 , so approximate standard deviation of 17 , which is larger than the model std dev of 14.
V2: For example, $\mathrm{Sd}=14 \rightarrow \pm 3$ sd approx range $=238-322$ which is less than the experimental range.
V3: For example, $\mathrm{p}(\mathrm{X}<250)=0.016(\mathrm{ND})$ but much higher $\frac{7}{70}=0.1$ in data, showing more data on the left than ND so the spread must be greater.

Shape

S1: A normal distribution is symmetrically distributed about the centre, but this data is left skewed and not bell-shaped (Mean \neq Median \neq Mode so ND not valid as peak (mode) 290-300 not in centre).
e.g. $P(X<250)=0.016(N D)$ but much higher $\frac{7}{70}=0.1$ in data showing larger left tail than ND so not symmetrical.
S2: Student could calculate any probability and compare to show skew of data. e.g. 99% of the ND model would be between 243 and 316 km , while the data clearly extends further, especially to the left.
S3: This data is not clearly uni-modal, where the normal distribution model would have one central peak.

Evaluation

1. Clear decision as to whether the claim can be justified or not. For example, "The means seem close, but the sd does not match the claim, so I do not think it is a fair claim."
2. However, the test data was only collected in urban areas. The manufacturer may have used data from a whole range of driving conditions so, even though Figure 1 is not very normal, it is possible that the manufacturer's claim is correct.

TWO valid
comments
about different
:---
shape, centre,
spread or
comment on
the quality of
the testing.

TWO valid
comparative
comments
about different
aspects of
shape, centre,
spread with
justification.

TWO valid comparative comments about different aspects of shape, centre, spread with justification.
AND
Clear and explicit evaluation of the manufacturer's claim.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

$\begin{gathered} \text { Q } \\ \text { THREE } \end{gathered}$	Evidence	Achievement (u)	Achievement with Merit (r)	Achievement with Excellence (t)
(a)(i)	$\mathrm{P}(\mathrm{EV} \text { or } \mathrm{PHEV})=\frac{420}{2000}=0.21$	Correct proportion.		
(ii)	$\mathrm{P}($ solar among EV owners $)=\frac{104}{275}=0.3782$ $\mathrm{P}($ solar among PHEV owners $)=\frac{45}{145}=0.3103$ $\mathrm{P}($ solar among non-electric owners $)=\frac{205}{1580}=0.1297$ EV owners are more likely to have a home solar system than PHEV or non-electric car owners.	One correct P(solar) probability found	All three probabilities correct with conclusion.	
(iii) (iv)	22144 home solar systems Total $\mathrm{P}\left(\mathrm{EV}\right.$ among solar owners) in America $=\frac{104}{354}$ $=0.2938$ If these results are valid in NZ we would expect about 29% of the home solar system owners to have EVs, which is 6506 people who would have EVs. Accept any whole number between 6422 (29\%) and 6510 (29.4\%) Possible reasons why this estimate may not be valid: - Sampling method (online survey of those interested / owners) - Transference of findings from America to NZ may not be valid as... (differences in technology, pricing, availability etc.) Sample or population size disparities, or differences in the time that surveys ran for, are not valid reasons.	Correct probability EV / Solar found OR gives at least one valid reason why the estimate may not be valid.	Correct expected value rounded to whole number AND at least one valid reason why the estimate may not be appropriate.	
(b)(i)	Table 2: Europe P (home solar system among non-electric owners) $=\frac{185}{879}=0.2105$	Probability correct.		

(ii)	In America: $\mathrm{P}($ solar among EV owners $)=\frac{104}{275}=0.3782$ $P($ solar among non $-E V$ owners $)=\frac{205}{1580}=0.1297$ Relative Risk $=\frac{0.3782}{0.1297}=2.91$ times as likely for EV owners to have solar than non-EV owners in America. This is close but slightly under 3 times as likely in the claim. If PHEV included in EV: $\frac{149 / 420}{205 / 1580}=\frac{0.3547}{0.1297}=2.74 \text { times as likely }$ In Europe: $\mathrm{P}($ solar among EV owners $)=\frac{63}{225}=0.28$ $\mathrm{P}($ solar among non -EV owners $)=\frac{185}{879}=0.2105$ Relative Risk $=\frac{0.28}{0.2105}=1.33$ which means that EV owners in Europe are 33% more likely to have a home solar system than non-EV owners. This is close to the claim of 30%. If PHEV included in EV: $\frac{86 / 321}{185 / 879}=\frac{0.2679}{0.2105}=1.27 \text { which is } 27 \% \text { more likely. }$ Given that this was only one sample of reasonable size, these relative risks are close enough to the claims to suggest they could be substantiated OR clear discussion of why they are not valid, such as citing that 2.91 is less than 3 for America, or qualifying their claims by citing the fact that online surveys might not be representative of the whole population because of participation bias.	One European probability correct.	One relative risk obtained correctly.	T1 Calculates both relative risks correctly and interprets them and makes a decision on the validity of the claims. T2: Both relative risks calculated and interpreted AND validity of the claims is justified (either way) with at least one valid connection to the context of these surveys.

N6	N1	N2	A3	A4	M5	M6	E7	E8
No response; no releavat evidence.	A valid attept at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	T 1	T2

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-8$	$9-14$	$15-19$	$20-24$

