Assessment Schedule - 2020

Mathematics and Statistics (Statistics): Apply probability concepts in solving problems (91585)

Evidence Statement

Q	Expected Coverage				Achievement (u)	Merit (r)	Excellence (t)
$\begin{aligned} & \text { ONE } \\ & \text { (a)(i) } \end{aligned}$	 LBS Normal Total P (dehydra	Dehydrated 20 7 27 $\frac{27}{80}=0.3375$	Not Dehydrated 12 41 53	Total 32 48 80	P(dehydrated) correctly calculated.		
(ii)	$\mathrm{P}(\text { dehydrated } \cap \text { LBS })=\frac{20}{80}=0.25 \neq 0$ As this probability is not equal to zero, the events ['student is dehydrated' and 'student has low blood sugar'] are not mutually exclusive.				P(dehydrated \cap LBS) correctly calculated.	P(dehydrated \cap LBS) correctly calculated, shown not equal to zero and statement of events not being mutually exclusive.	
(iii)	Reasons may include: - Students are selected from only one school - the proportion of low blood sugar after exercise may be different in another school. - Amount of data - a small number of students (80) have been studied, the estimate of the probability of low blood sugar after exercise may be less accurate for this small group of students. Accept other valid reasons with clear links to the difference in probability of decreased blood sugar levels.					ONE reason identified and explained, with clear link to context. OR TWO reasons identified without clear link to context.	TWO reasons identified and explained, with clear links to context.

| (b)(i) | $\mathrm{P}($ decreased cognitive ability \cap dehydrated and low blood sugar)
 $=0.15 \times 0.45=0.0675$
 $\mathrm{P}($ decreased cognitive ability \cap not dehydrated and normal blood sugar)
 $=0.57 \times 0.05=0.0285$
 $\mathrm{P}($ decreased cognitive ability \cap dehydrated or low blood sugar, but not both)
 $=0.28 \times 0.32=0.0896$
 $\mathrm{P}($ decreased cognitive ability)
 $=0.0675+0.0285+0.0896$
 $=0.1856$ | At least ONE combined
 probability correctly
 calculated. | Probability of decreased
 cognitive ability correctly
 calculated. |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| (ii) | $\mathrm{P}($ not dehydrated and normal blood sugar \mid decreased cognitive ability)
 $=\frac{0.0285}{0.1856}=0.1536$
 The proportion of students with decreased cognitive ability that are neither dehydrated
 nor have low blood sugar is approximately 15%. | Correct (or consistent)
 probability with clear
 working. | |

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Reasonable start / attempt at one part of the question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Q	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	$\mathrm{P}($ cholesterol level greater than $200 \mathrm{mg} / \mathrm{dL})=(0.05 \times 0.73)+(0.95 \times 0.24)$ $\begin{aligned} & =0.0365+0.228 \\ & =0.2645 \end{aligned}$ Number expected $=0.2645 \times 100=26.45$. Accept 26 or 27 people .	Number correctly calculated.		
(ii)	$\begin{aligned} & \mathrm{P}(\text { heart disease } \mid \text { positive test result }) \\ & =\frac{\mathrm{P}(\text { heart disease } \cap \text { positive })}{\mathrm{P}(\text { positive })} \\ & =\frac{0.0365}{0.2645}=0.138 \end{aligned}$ The patient should not be overly concerned that they actually have heart disease if they receive a positive test result as the chance of actually having heart disease is small.	Conditional probability correctly calculated.	Conditional probability correctly calculated. AND Comment that the patient should not be concerned.	
(iii)	When the threshold value increases, the P (positive test) decreases. The P (no heart disease when cholesterol is above the new threshold) decreases significantly compared to P (heart disease when cholesterol is above the new threshold). This means that P (heart disease \mid cholesterol is above the higher threshold) will increase.		Statement that P (positive test) decreases.	Statement that P (positive test) decreases. AND Correct reasoning that P (heart disease \| positive test) increases.

(b)(i)	$\frac{1420}{5000}=0.284$	Proportion correct.		
(ii)	$\begin{aligned} & P(\text { diabetes } \mid \text { heart disease })=\frac{388}{1907}=0.2035 \\ & P(\text { stroke } \mid \text { heart disease })=\frac{170}{1907}=0.0891 \\ & \frac{P(\text { diabetes } \mid \text { heart disease })}{P(\text { stroke } \mid \text { heart disease })}=2.282 \end{aligned}$ The claim is justified, as a [randomly chosen] patient is more than twice as likely to be diagnosed with diabetes compared to stroke (given that they have been diagnosed with heart disease).	At least one conditional probability correctly calculated.	Calculation of correct ratio using correct denominator. OR Correct ratio found with use of incorrect denominator and claim confirmed with justification.	Calculation of correct ratio. AND Claim confirmed with justification.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Reasonable start $/$ attempt at one part of the question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	

(b)(i)	$\begin{aligned} & \mathrm{P}(\text { female } \cap \text { ear piercing }(\mathrm{s}))=\frac{91}{250}=0.364 \\ & \mathrm{P}(\text { female }) \times \mathrm{P}(\text { ear piercing }(\mathrm{s}))=\frac{138}{250} \times \frac{149}{250}=0.329 \end{aligned}$ As $\mathrm{P}($ female $) \times \mathrm{P}($ ear piercing $(\mathrm{s})) \neq \mathrm{P}($ female \cap ear piercing $(\mathrm{s}))$, the two events stated are not independent. OR using the conditional probability test, for example, $\begin{aligned} & \mathrm{P}(\text { ear piercing }(\mathrm{s}))=\frac{149}{250}=0.596 \\ & \mathrm{P}(\text { ear piercing }(\mathrm{s}) \mid \text { female })=\frac{91}{138}=0.659 \end{aligned}$ Different answers suggest non-independence of the two events stated.	Relevant probabilities calculated for the test chosen.	Relevant probabilities calculated for the test chosen. AND Statement of nonindependence of events.	
(ii)	$\mathrm{P}(3$ males have ear piercing $(\mathrm{s}))=$ $\frac{58}{112} \times \frac{57}{111} \times \frac{56}{110}=0.1354$ $\mathrm{P}(2$ males have ear piercing(s)) $=$ $\begin{aligned} & \left(\frac{58}{112} \times \frac{57}{111} \times \frac{54}{110}\right)+\left(\frac{58}{112} \times \frac{54}{111} \times \frac{57}{110}\right)+\left(\frac{54}{112} \times \frac{58}{111} \times \frac{57}{110}\right) \\ & =0.3916 \\ & \mathrm{P}(2 \text { or } 3 \text { males have ear piercing }(\mathrm{s}))= \\ & =0.1354+0.3916 \\ & =0.5270 \end{aligned}$ Assumptions: - Assumption made that the presence of ear piecing(s) for each male is independent. - Assumption made that sampling without replacement is necessary as you can't reselect_a male.	Probability correctly calculated for either 2 or 3 males having ear piercing(s). OR Incorrect_probability calculated for either of 2 or 3 males having ear piercing(s) using sampling with replacement. That is, $\mathrm{P}(3$ males have ear piercing (s)) $=0.1389$ $\mathrm{P}(2$ males have ear piercing (s)) $=0.3879$	Probability correctly calculated for sum of 2 or 3 males having ear piercing(s). OR Incorrect_probability calculated for sum of 2 or 3 males having ear piercing(s) using sampling with replacement. That is, P (2 or 3 males have ear piercing(s)) $\begin{aligned} & =0.1389+0.3879 \\ & =0.5268 \end{aligned}$	Probability correctly calculated for 2 or 3 males having ear piercing(s). AND One assumption stated clearly in context.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Reasonable start / attempt at one part of the question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

