Assessment Schedule - 2021

Mathematics and Statistics: Apply geometric reasoning in solving problems (91031)

Evidence

Do not penalise incorrect rounding if sufficient evidence provided.

Q ONE	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a) (i)	Use of Trigonometry to find PL = $18 \times \tan 20$ = 18×0.36397 x = 6.55 cm	Showing, with evidence of working, that $PL = x = 6.55$ cm. $2dp$ confirms the correct working.		
(ii)	Use of Trigonometry to find $y = \cos^{-1}\left(\frac{18}{35}\right)$ $= \cos^{-1}(0.5143)$ $y = 59.1^{\circ}$	Showing, with evidence of working, that $y = 59.1^{\circ}$		
(b) (i)	In triangle AEF, $x^2 + x^2 = 2^2$ (Pythagoras) $2x^2 = 4$ $x^2 = 2$ x = 1.4142 OR $\sin 45^\circ = \frac{AF}{2}$ (trigonometry) $AF = 2 \times \sin 45^\circ$ $AF = 2 \times 0.7071$ AF = 1.4142 cm OR OR alternatively use $\cos 45^\circ$.	Forms a correct Pythagoras equation. OR Forms a correct trigonometry equation.	Correct value for AF (or equivalent) AF = 1.4142, with clear evidence of working.	
(ii)	Then BF = $20 - 1.4142 = 18.5858$ In triangle FBG, $w^2 = 18.5858^2 + 18.5858^2$ $w^2 = 690.86$ w = 26.28 cm OR $\sin 45^\circ = \frac{20 - 1.4142}{w}$ $w = \frac{18.5858}{\sin 45^\circ} = 26.284$ OR alternatively use $\cos 45^\circ$.	Correct length $w = 26.28$ cm found, with evidence of working.		

(c)	In triangle BCF, FC = 6 × tan 52° = 6 × 1.2799 FC = 7.68 cm. AB = 30 – 7.68 = 22.32 cm. In triangle ABE, Use of Trigonometry to find $p = \cos^{-1}\left(\frac{22.32}{33}\right)$ = $\cos^{-1}(0.6764)$ p = 47.4° OR alternative method.	Showing, with evidence of working, that FC = 7.68 cm. OR Evaluation of angle p, with consistency, with evidence of working.	Correct value of $p = 47.4^{\circ}$ found, with clear evidence of working.	
(d)	Use of Pythagoras in triangle ABH, $AB = \sqrt{17^2 - 2^2}$ $AB = \sqrt{285}$ $AB = 16.88 \text{ cm}$ $CG = 16.88 - 4 = 12.88 \text{ cm}.$ Use of trigonometry in triangle ADG, $AD = 4 \times \tan 65^{\circ}$ $= 4 \times 2.1445$ $AD = 8.58 \text{ cm}.$ $CH = 8.58 - 2 = 6.58 \text{ cm}.$ Use of trigonometry in triangle ADG, $AG = \frac{4}{\cos 65^{\circ}}$ $AG = 9.46 \text{ cm}.$ Use of Pythagoras in triangle CGH, $GH = \sqrt{12.88^2 + 6.58^2}$ $GH = \sqrt{209.19}$ $GH = 14.46 \text{ cm}$ $Total Distance = 9.46 + 14.46 + 17$ $= 40.92 \text{ cm}.$ OR alternative method.	Finding, with evidence of working, any ONE of: • Length AB = 16.88 • Length AG = 9.46 cm • Length GH = 14.46 cm. 2dp required (or clear method shown) to exclude incorrect assumption of the red triangle as being right-angled.	Finding, with evidence of working, any TWO of: • Length GC = 12.88 • Length CH = 6.58 • Length AG = 9.46 • Length GH = 14.46	Finding, with evidence of working, the total length 40.92 cm. T1 / E7 Identifies, with evidence of working, the lengths of the two remaining sides of the red triangle: AG = 9.46 and GH = 14.46 OR Identifies, with evidence of working, a consistent total length, with an earlier minor error A minor error could be for example: an arithmetic error or omitting only one of the subtractions of 2cm or 4 cm but not both of them.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	T1	T2

Q TWO	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a) (i)	∠HPE = 77° (vertically opposite angles are equal). ∠FHE = 81° (angles in the same segment / sector are equal) $x = \angle HEG = 180 - 77 - 81 = 22$ ° (angles in a triangle add to 180 °) OR ∠GFP = $180 - 81 - 77 = 22$ ° (angles in a triangle add to 180 °) $x = \angle HEG = 22$ ° (angles in the same segment / sector are equal) OR alternative method.	Required angle $x = 22^{\circ}$ found, with some evidence, which could be on the diagram. (Reasons not necessary)		
(a) (ii)	\angle FCE = 2 × 81 = 162° (angle at the centre is twice that at the circumference) \angle ECF = 360 – 162° = 198° (angles at a point sum to 360°) OR alternative method.	Required angle $y = 198^{\circ}$ found. (Reasons not necessary.)		
(b)	∠PQC = 90° (angle between tangent and radius is a right-angle) In triangle PQW, ∠PWQ = $180 - 90 - 40 = 50$ ° (angle sum of triangle PQW is 180 °) ∠CVW = 50 ° (base angles of an isosceles triangle are equal) ∠VCW = $180 - 50 - 50 = 80$ ° (angle sum of triangle CVW is 180 °) ∠QCV = $e = 180 - 80 = 100$ ° (adjacent angles on a straight line) OR alternative method.	Finding two angles from: • ∠PQC = 90° • ∠PWQ = 50° • ∠CVW = 50° • ∠VCW = 80° OR One of these angles with a valid reason. OR CAO. Angles could be shown on the diagram.	Required angle $e = 100^{\circ}$ found, with at least one valid reason.	

(c)	∠ KQN = $180 - 90 - 38 = 52^{\circ}$ (angle sum of triangle NKQ) ∠KQM = $180 - 52 = 128^{\circ}$ (adjacent angles on a straight line) ∠QLM = $\frac{(180 - 128)}{2} = 26^{\circ}$ (base angles of isosceles triangle are equal) $y = \angle$ KLM = $180 - 26 = 154^{\circ}$ (adjacent angles on straight line) OR alternative method.	Finding two angles from ∠KQN = 52° or ∠KQM = 128° or ∠QLM = 26° OR One of these angles with a valid reason (consistency applies). OR	Required angle $y = 154^{\circ}$ found, with at least one valid reason.	
(d)	∠PRW = 90° (angle in a semicircle is a right angle) ∠PWR = $180 - y^\circ$ (adjacent angles on a straight line) ∠PQR = $180 - (180 - y) = y$ (opposite angles of a cyclic quad add up to 180) ∠QRP = $180 - x - y$ (angle sum of triangle PQR) ∠SRW = $180 - 90 - (180 - x - y)$ = $x + y - 90$ (adjacent angles on a straight line) ∠RSW = $180 - y - (x + y - 90)$ ∠ $z = 180 - y - x - y + 90^\circ$ ∠ $z = 270^\circ - x - 2y$ OR alternative method.	CAO. One step shown involving calculation of an angle involving x or y i.e. Finding $\angle PWR = 180 - y$ or $\angle PQR = y$ or $\angle QRP = 180 - x - y$ or $\angle SRW = 180 - z - y$ OR two steps, having substituted numerical values for x and y . OR CAO	Finding TWO angles involving calculations including <i>x</i> or <i>y</i> , with at least one valid reason. OR Finding the value of <i>z</i> , having substituted numerical values for <i>x</i> and <i>y</i> .	T2 / E8 Finding $\angle z$, in terms of x and y , with clear justification. $z = 270 - x - 2y$ T1 / E7 Finding $\angle z$, in terms of x and y , with unclear justification or not simplified. OR Minor error, e.g. incorrect algebraic rearrangement.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	T1	T2

Q THREE	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	Use of trigonometry to find $\angle XWY = \sin^{-1}\frac{33}{85}$ = 22.84° Then $\angle f = 90 - 22.84 = 67.16$ ° OR Use of trigonometry to find $\angle WYX = \cos^{-1}\frac{33}{85}$ = 67.16° Then $\angle f = 67.16$ ° (alternate angles between parallel lines are equal) OR alternative method.	Showing, with evidence of working, that $f = 67.16^{\circ}$.		
(b)	Similar triangles recognised and g calculated using ratio of sides: $\frac{g+4.64}{10.26} = \frac{4.64}{2.85}$ $g = 12.064 \text{ cm}$ OR ratio of 3.6 (or its reciprocal, 0.272) calculated and correctly used: $\frac{RS}{QT} = \frac{10.26}{2.85} = 3.6$ Then $\frac{PS}{PT} = 3.6$ $PS = 3.6 \times 4.64$ $PS = 16.704$ Then $g = 16704 - 4.64$ $g = 12.064 \text{ cm}$ Justification of similar triangles not required. OR Use of trigonometry to find $\angle QPT = \tan^{-1}\frac{2.85}{4.64} = 31.56^{\circ}$ Then in triangle RPS, $\tan 31.56 = \frac{10.26}{PS}$ $PS = \frac{10.26}{6.6142}$ $PS = 16.704$ Then $g = 16.704 - 4.64$ $g = 12.064 \text{ cm}$ OR alternative method.	Forming an equation involving a correct ratio of similar sides. OR Finding a correct ratio involving similar triangles e.g. of 3.6 or its reciprocal 0.2727 with evidence. OR Finding angle of ∠QPT = 31.56° with evidence. OR CAO.	Calculation of correct value of $g = 12.064$ cm with evidence of working.	

(c)(i)	Use of bearings and geometry to find $\angle ABG = 180 - 128 = 52^{\circ}$ (co-interior angles between parallel lines add to 180°) (or equivalent) CAO is not sufficient.	Showing, with evidence of working, that $\angle ABG = u = 52^{\circ}$ Reasons not necessary.		
(c)(ii)	∠CBH = $180 - 90 - 52 = 38^{\circ}$ (adjacent angles on a straight line) ∠KCB = 38° (alternate angles between parallel lines are equal) ∠BCH = $90 - 38 = 52^{\circ}$ Use of trigonometry in triangle ABC, ∠ACB = $\tan^{-1}\left(\frac{1500}{800}\right)$ ∠ACB = 61.93° ∠ACJ = $180 - 61.93^{\circ} - 52 = 66.07^{\circ}$ Required bearing = $270^{\circ} + 66.07^{\circ}$ = 336.07° OR alternative method.	Finding, with evidence of working, that ∠ACB = 61.93° OR One relevant length, with evidence of working: BG = 923.49 km BH = 630.41 km AG = 1700 km OR CAO	Correct bearing of 336.7°.	
(d)(i)	Using trigonometry / Pythagoras in triangle ABC, AB = $86 \times \cos 56^{\circ}$ AB = 48.09 metres Using trigonometry / Pythagoras in triangle ABC, BC = $86 \times \sin 56^{\circ}$ BC = 71.30 metres Using trigonometry in triangle ABT, Height = BT = $48.09 \times \tan 32^{\circ}$ Tower Height = 30.05 metres. Using trigonometry in triangle BCT, \angle BCT = $\tan^{-1}\left(\frac{30.05}{71.30}\right)$ \angle BCT = $\tan^{-1}\left(0.4215\right)$ Required angle of elevation is \angle BCT = 22.85° OR alternative method.	One correct length, with evidence of working from: • AB = 48.09 • BC = 71.30 OR CAO	Proving tower height of 30.05 m. OR Consistent angle of elevation. OR Both lengths AB and BC found, with evidence.	Clear evidence Proving tower height of 30.05 m. AND Correct angle of elevation of 22.85°, with evidence. E7 Clear evidence Proving tower height of 30.05 m AND Finds a consistent angle of elevation with a minor error in working.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	Q 2 (d) with minor error.	Q 2 (d)

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 - 6	7 - 14	15 – 20	21 - 24