Assessment Schedule - 2021

Mathematics and Statistics: Apply geometric reasoning in solving problems (91031)

Evidence

Do not penalise incorrect rounding if sufficient evidence provided.

$\begin{gathered} \mathbf{Q} \\ \text { ONE } \end{gathered}$	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a) (i)	Use of Trigonometry to find $\begin{aligned} & \mathrm{PL}=18 \times \tan 20 \\ & =18 \times 0.36397 \\ & x=6.55 \mathrm{~cm} \end{aligned}$	Showing, with evidence of working, that $\mathrm{PL}=x=6.55 \mathrm{~cm} .$ $2 d p$ confirms the correct working.		
(ii)	Use of Trigonometry to find $\begin{aligned} y & =\cos ^{-1}\left(\frac{18}{35}\right) \\ & =\cos ^{-1}(0.5143) \\ y & =59.1^{\circ} \end{aligned}$	Showing, with evidence of working, that $y=59.1^{\circ}$		
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	In triangle AEF, $\begin{aligned} & x^{2}+x^{2}=2^{2} \text { (Pythagoras) } \\ & 2 x^{2}=4 \\ & x^{2}=2 \\ & x=1.4142 \end{aligned}$ OR $\sin 45^{\circ}=\frac{\mathrm{AF}}{2}$ (trigonometry) $\begin{aligned} & \mathrm{AF}=2 \times \sin 45^{\circ} \\ & \mathrm{AF}=2 \times 0.7071 \\ & \mathrm{AF}=1.4142 \mathrm{~cm} \end{aligned}$ OR OR alternatively use $\cos 45^{\circ}$.	Forms a correct Pythagoras equation. OR Forms a correct trigonometry equation.	Correct value for AF (or equivalent) $\mathrm{AF}=1.4142$, with clear evidence of working.	
(ii)	Then BF $=20-1.4142=18.5858$ In triangle FBG, $\begin{aligned} & w^{2}=18.5858^{2}+18.5858^{2} \\ & w^{2}=690.86 \\ & w=26.28 \mathrm{~cm} \end{aligned}$ OR $\begin{aligned} & \sin 45^{\circ}=\frac{20-1.4142}{w} \\ & w=\frac{18.5858}{\sin 45^{\circ}}=26.284 \end{aligned}$ OR alternatively use $\cos 45^{\circ}$.	Correct length $w=26.28 \mathrm{~cm}$ found, with evidence of working.		

(c)	In triangle BCF , $\begin{aligned} & \mathrm{FC}=6 \times \tan 52^{\circ} \\ & =6 \times 1.2799 \\ & \mathrm{FC}=7.68 \mathrm{~cm} . \end{aligned}$ $\mathrm{AB}=30-7.68=22.32 \mathrm{~cm} .$ In triangle ABE , Use of Trigonometry to find $\begin{aligned} & p=\cos ^{-1}\left(\frac{22.32}{33}\right) \\ & =\cos ^{-1}(0.6764) \\ & p=47.4^{\circ} \end{aligned}$ OR alternative method.	Showing, with evidence of working, that $\mathrm{FC}=7.68 \mathrm{~cm}$ OR Evaluation of angle p, with consistency, with evidence of working.	Correct value of $p=47.4^{\circ}$ found, with clear evidence of working.	
(d)	Use of Pythagoras in triangle ABH, $\begin{aligned} & \mathrm{AB}=\sqrt{17^{2}-2^{2}} \\ & \mathrm{AB}=\sqrt{285} \\ & \mathrm{AB}=16.88 \mathrm{~cm} \\ & \mathrm{CG}=16.88-4=12.88 \mathrm{~cm} . \end{aligned}$ Use of trigonometry in triangle ADG, $\begin{aligned} & \mathrm{AD}=4 \times \tan 65^{\circ} \\ &=4 \times 2.1445 \\ & \mathrm{AD}=8.58 \mathrm{~cm} . \\ & \mathrm{CH}=8.58-2=6.58 \mathrm{~cm} . \end{aligned}$ Use of trigonometry in triangle ADG, $\begin{aligned} \mathrm{AG} & =\frac{4}{\cos 65^{\circ}} \\ \mathrm{AG} & =9.46 \mathrm{~cm} \end{aligned}$ Use of Pythagoras in triangle CGH, $\begin{aligned} & \mathrm{GH}=\sqrt{12.88^{2}+6.58^{2}} \\ & \mathrm{GH}=\sqrt{209.19} \\ & \mathrm{GH}=14.46 \mathrm{~cm} \\ & \text { Total Distance }=9.46+14.46+17 \\ & =40.92 \mathrm{~cm} . \end{aligned}$ OR alternative method.	Finding, with evidence of working, any ONE of: - Length $\mathrm{AB}=16.88$ - Length $\mathrm{AD}=8.58 \mathrm{~cm}$ - Length $\mathrm{AG}=9.46 \mathrm{~cm}$ - Length $\mathrm{GH}=14.46 \mathrm{~cm}$. $2 d p$ required (or clear method shown) to exclude incorrect assumption of the red triangle as being right-angled.	Finding, with evidence of working, any TWO of: - Length GC $=12.88$ - Length $\mathrm{CH}=6.58$ - Length $\mathrm{AG}=9.46$ - Length GH $=14.46$	T2 / E8 Finding, with evidence of working, the total length 40.92 cm . T1 / E7 Identifies, with evidence of working, the lengths of the two remaining sides of the red triangle: $\mathrm{AG}=9.46$ and GH $=14.46$ OR Identifies, with evidence of working, a consistent total length, with an earlier minor error A minor error could be for example: an arithmetic error or omitting only one of the subtractions of 2 cm or 4 cm but not both of them.

N0	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	T1	T2

NCEA Level 1 Mathematics and Statistics (91031) 2021 — page 3 of 7

$\begin{gathered} \mathrm{Q} \\ \text { TWO } \end{gathered}$	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a) (i)	$\angle \mathrm{HPE}=77^{\circ}$ (vertically opposite angles are equal). $\angle \mathrm{FHE}=81^{\circ}$ (angles in the same segment / sector are equal) $x=\angle \mathrm{HEG}=180-77-81=22^{\circ}(\text { angles }$ in a triangle add to 180°) OR $\angle \mathrm{GFP}=180-81-77=22^{\circ}$ (angles in a triangle add to 180°) $x=\angle \mathrm{HEG}=22^{\circ}$ (angles in the same segment/sector are equal) OR alternative method.	Required angle $x=22^{\circ}$ found, with some evidence, which could be on the diagram. (Reasons not necessary)		
(a) (ii)	$\angle \mathrm{FCE}=2 \times 81=162^{\circ}$ (angle at the centre is twice that at the circumference) $\angle \mathrm{ECF}=360-162^{\circ}=198^{\circ}$ (angles at a point sum to 360°) OR alternative method.	Required angle $y=198^{\circ}$ found. (Reasons not necessary.)		
(b)	$\angle \mathrm{PQC}=90^{\circ}$ (angle between tangent and radius is a right-angle) In triangle PQW , $\angle \mathrm{PWQ}=180-90-40=50^{\circ}$ (angle sum of triangle PQW is 180°) $\angle \mathrm{CVW}=50^{\circ}$ (base angles of an isosceles triangle are equal) $\angle \mathrm{VCW}=180-50-50=80^{\circ}$ (angle sum of triangle CVW is 180°) $\angle \mathrm{QCV}=e=180-80=100^{\circ}$ (adjacent angles on a straight line) OR alternative method.	Finding two angles from: - $\angle \mathrm{PQC}=90^{\circ}$ - $\angle \mathrm{PWQ}=50^{\circ}$ - $\angle \mathrm{CVW}=50^{\circ}$ - $\angle \mathrm{VCW}=80^{\circ}$ OR One of these angles with a valid reason. OR CAO. Angles could be shown on the diagram.	Required angle $e=100^{\circ}$ found, with at least one valid reason.	

(c)	$\angle \mathrm{KQN}=180-90-38=52^{\circ}$ (angle sum of triangle NKQ) $\angle \mathrm{KQM}=180-52=128^{\circ}$ (adjacent angles on a straight line) $\angle \mathrm{QLM}=\frac{(180-128)}{2}=26^{\circ}$ (base angles of isosceles triangle are equal) $y=\angle \mathrm{KLM}=180-26=154^{\circ}$ (adjacent angles on straight line) OR alternative method.	Finding two angles from $\angle \mathrm{KQN}=52^{\circ}$ or $\angle \mathrm{KQM}=128^{\circ}$ or $\angle \mathrm{QLM}=26^{\circ}$ OR One of these angles with a valid reason (consistency applies). OR CAO.	Required angle $y=154^{\circ}$ found, with at least one valid reason.	
(d)	$\angle \mathrm{PRW}=90^{\circ}$ (angle in a semicircle is a right angle) $\angle \mathrm{PWR}=180-y^{\circ}$ (adjacent angles on a straight line) $\angle \mathrm{PQR}=180-(180-y)=y$ (opposite angles of a cyclic quad add up to 180) $\angle \mathrm{QRP}=180-x-y$ (angle sum of triangle PQR) $\begin{aligned} & \angle \mathrm{SRW}=180-90-(180-x-y) \\ & =x+y-90 \end{aligned}$ (adjacent angles on a straight line) $\begin{aligned} & \angle \mathrm{RSW}=180-y-(x+y-90) \\ & \angle z=180-y-x-y+90^{\circ} \\ & \angle z=270^{\circ}-x-2 y \end{aligned}$ OR alternative method.	One step shown involving calculation of an angle involving x or y i.e. Finding $\angle \mathrm{PWR}=180-y$ or $\angle \mathrm{PQR}=y$ or $\angle \mathrm{QRP}$ $=180-x-y$ or \angle SRW $=180-z-y$ OR two steps, having substituted numerical values for x and y. OR CAO	Finding TWO angles involving calculations including x or y, with at least one valid reason. OR Finding the value of z, having substituted numerical values for x and y.	T2 / E8 Finding $\angle z$, in terms of x and y, with clear justification. $z=270-x-2 y$ T1 / E7 Finding $\angle z$, in terms of x and y, with unclear justification or not simplified. OR Minor error, e.g. incorrect algebraic rearrangement.

N0	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	T1	T2

NCEA Level 1 Mathematics and Statistics (91031) 2021 — page 5 of 7

$\begin{gathered} \text { Q } \\ \text { THREE } \end{gathered}$	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	Use of trigonometry to find $\begin{aligned} & \angle X W Y=\sin ^{-1} \frac{33}{85} \\ & =22.84^{\circ} \end{aligned}$ Then $\angle f=90-22.84=67.16^{\circ}$ OR Use of trigonometry to find $\begin{aligned} & \angle W Y X=\cos ^{-1} \frac{33}{85} \\ & =67.16^{\circ} \end{aligned}$ Then $\angle f=67.16^{\circ}$ (alternate angles between parallel lines are equal) OR alternative method.	Showing, with evidence of working, that $f=67.16^{\circ}$.		
(b)	Similar triangles recognised and g calculated using ratio of sides: $\begin{aligned} & \frac{g+4.64}{10.26}=\frac{4.64}{2.85} \\ & g=12.064 \mathrm{~cm} \end{aligned}$ OR ratio of 3.6 (or its reciprocal, 0.272) calculated and correctly used: $\frac{\mathrm{RS}}{\mathrm{QT}}=\frac{10.26}{2.85}=3.6$ Then $\frac{\mathrm{PS}}{\mathrm{PT}}=3.6$ $\begin{aligned} & \mathrm{PS}=3.6 \times 4.64 \\ & \mathrm{PS}=16.704 \end{aligned}$ Then $g=16704-4.64$ $g=12.064 \mathrm{~cm} .$ Justification of similar triangles not required. OR Use of trigonometry to find $\angle \mathrm{QPT}=\tan ^{-1} \frac{2.85}{4.64}=31.56^{\circ}$ Then in triangle RPS, $\tan 31.56=\frac{10.26}{\mathrm{PS}}$ $\mathrm{PS}=\frac{10.26}{\tan 31.56}$ PS $=\frac{10.26}{0.6142}$ $\mathrm{PS}=16.704$ Then $g=16.704-4.64$ $g=12.064 \mathrm{~cm} .$ OR alternative method.	Forming an equation involving a correct ratio of similar sides. OR Finding a correct ratio involving similar triangles e.g. of 3.6 or its reciprocal 0.2727 with evidence. OR Finding angle of $\angle \mathrm{QPT}=31.56^{\circ}$ with evidence. OR CAO.	Calculation of correct value of $g=12.064 \mathrm{~cm}$ with evidence of working	

NCEA Level 1 Mathematics and Statistics (91031) 2021 — page 6 of 7

\begin{tabular}{|c|c|c|c|c|}
\hline (c)(i) \& \begin{tabular}{l}
Use of bearings and geometry to find \(\angle \mathrm{ABG}=180-128=52^{\circ}\) \\
(co-interior angles between parallel lines add to \(180^{\circ}\)) \\
(or equivalent) \\
CAO is not sufficient.
\end{tabular} \& \begin{tabular}{l}
Showing, with evidence of working, that \(\angle \mathrm{ABG}=u=52^{\circ}\) \\
Reasons not necessary.
\end{tabular} \& \& \\
\hline (c)(ii) \& \begin{tabular}{l}
\[
\angle \mathrm{CBH}=180-90-52=38^{\circ}
\] \\
(adjacent angles on a straight line)
\[
\angle K C B=38^{\circ}
\] \\
(alternate angles between parallel lines are equal)
\[
\angle \mathrm{BCH}=90-38=52^{\circ}
\] \\
Use of trigonometry in triangle ABC ,
\[
\begin{aligned}
\& \angle \mathrm{ACB}=\tan ^{-1}\left(\frac{1500}{800}\right) \\
\& \angle \mathrm{ACB}=61.93^{\circ} \\
\& \angle \mathrm{ACJ}=180-61.93^{\circ}-52=66.07^{\circ} \\
\& \text { Required bearing }=270^{\circ}+66.07^{\circ} \\
\& =336.07^{\circ}
\end{aligned}
\] \\
OR alternative method.
\end{tabular} \& \begin{tabular}{l}
Finding, with evidence of working, that \(\angle \mathrm{ACB}=61.93^{\circ}\) \\
OR \\
One relevant length, with evidence of working:
\[
\begin{aligned}
\& \mathrm{BG}=923.49 \mathrm{~km} \\
\& \mathrm{BH}=630.41 \mathrm{~km} \\
\& \mathrm{AG}=1700 \mathrm{~km}
\end{aligned}
\] \\
OR \\
CAO
\end{tabular} \& Correct bearing of \(336.7^{\circ}\). \& \\
\hline (d)(i)

(ii) \& \begin{tabular}{l}
Using trigonometry / Pythagoras in triangle ABC ,
$$
\mathrm{AB}=86 \times \cos 56^{\circ}
$$
$$
\mathrm{AB}=48.09 \text { metres }
$$

Using trigonometry / Pythagoras in triangle ABC ,

$\mathrm{BC}=86 \times \sin 56^{\circ}$

$\mathrm{BC}=71.30$ metres

Using trigonometry in triangle ABT ,

Height $=\mathrm{BT}=48.09 \times \tan 32^{\circ}$

Tower Height $=30.05$ metres.

Using trigonometry in triangle BCT ,
$$
\angle \mathrm{BCT}=\tan ^{-1}\left(\frac{30.05}{71.30}\right)
$$

$\angle \mathrm{BCT}=\tan ^{-1}(0.4215)$

Required angle of elevation is $\angle B C T=22.85^{\circ}$

OR alternative method.

 \&

One correct length, with evidence of working from:

- $\mathrm{AB}=48.09$

- $\mathrm{BC}=71.30$

OR

CAO

 \&

Proving tower height of 30.05 m .

OR

Consistent angle of elevation.

OR

Both lengths AB and BC found, with evidence.

 \&

E8

Clear evidence Proving tower height of 30.05 m . AND

Correct angle of elevation of 22.85°, with evidence.

E7

Clear evidence Proving tower height of 30.05 m AND

Finds a consistent angle of elevation with a minor error in working.
\end{tabular}

\hline
\end{tabular}

N0	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	Q 2 (d) with minor error.	Q2 (d)

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-6$	$7-14$	$15-20$	$21-24$

