Assessment Schedule - 2021

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Evidence

Q	Evidence				Achievement	Merit	Excellence
ONE (a)	Solid	Type of solid	Type of particle	Attractive forces between particles	- Two rows or two columns correct.	- Table correct.	
	$\begin{gathered} \hline \text { Oxygen } \\ \mathrm{O}_{2}(\mathrm{~s}) \end{gathered}$	Molecular	Molecules	Intermolecular forces			
	Copper $\mathrm{Cu}(s)$	Metallic	Atoms / cations (or metal nuclei) in sea of delocalised electrons	Metallic bonds			
	Graphite $\mathrm{C}(s)$	Covalent network	Atoms	Covalent bonds			
(b)	Copper is a metallic solid made up of atoms in a 3D lattice held together by non-directional metallic bonds or cations in a sea of delocalised electrons held together by (non-directional) metallic bonds. Due to the non-directional nature of the metallic bonds, particles can move past one another / substance can change shape without disrupting the bonding, thus copper can be stretched into wires. Due to the delocalised valence electrons in the structure, copper contains free-moving, charged particles, which allow it to conduct electricity.				- Describes structure of copper. - Identifies non-directional bonds required for ductility. OR Free charged particles for conductivity.	- Links ductility to particles moving without breaking non-directional metallic bonds. - Links conductivity to presence of delocalised valence electrons.	- Comprehensively explains conductivity and ductility of copper.
(c)	Oxygen is a molecular substance. The molecules are held together by weak intermolecular forces. These forces require only a little energy to overcome, turning oxygen into a gas; therefore the boiling point of oxygen is low. Graphite is a 2D-extended covalent network substance. It consists of layers of carbon atoms, bonded into hexagonal rings by strong covalent bonds. These bonds require a large amount of heat energy to overcome and therefore graphite only turns into a gas (sublimes) at very high temperatures. The difference in the strength of attractive forces between particles in each substance is what leads to the large difference in temperature required to form gaseous substances.				- Describes structure of oxygen. OR Describes structure of graphite. - Identifies that forces between particles must be broken to vaporise substance.	- Links strength of forces between particles to the temperature required for vaporisation of ONE substance.	- Fully links structure and bonding in each substance to the difference in temperature required for vaporisation.

NCEA Level 2 Chemistry (91164) 2021 — page 2 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3 m	4 m	$\begin{gathered} 2 \mathrm{e} \\ \text { (minor error) } \end{gathered}$	2 e

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i) (ii)	Diagram A. The negative change in enthalpy indicates the reaction is exothermic. This means the reaction releases energy, so the products have less energy than the reactants as shown in diagram A. Diagram B (Accept correct label on either diagram.)	- Identifies reaction as exothermic / energy is released. - $\Delta_{\mathrm{r}} H$ correctly labelled on either diagram.	- Correctly links energy of products and reactants in an exothermic reaction to correct diagram.	
(b)	$\begin{aligned} & m\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)=0.75 \times 2560=1920 \mathrm{~kg}=1920000 \mathrm{~g} \\ & n\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)=\frac{1920000}{170}=11294 \mathrm{~mol} \\ & \text { Energy }=\Delta_{\mathrm{r}} H \times n=\frac{15800}{2} \times 11294=89200000 \mathrm{~kJ}\left(8.92 \times 10^{7} \mathrm{~kJ}\right) \end{aligned}$	- One step of process correct.	- Process correct with minor error.	- Calculates energy produced with correct units.
(c)	Insoluble in water. Soluble in cyclohexane. Water is a polar solvent, while cyclohexane is a non-polar solvent. As kerosene is non-polar, the attractive forces it forms with water molecules are weaker than the existing force of attraction found between particles within both the solvent and solute. However, as both kerosene and cyclohexane are non-polar molecules, the attractions that form between cyclohexane and kerosene particles are strong enough to overcome the existing attractive forces within each substance, allowing kerosene to dissolve.	- Identifies water as a polar solvent and cyclohexane as non-polar. OR Correctly identifies solubility of kerosene in each solvent.	- Links relative strength of attractive forces between solute and solvent particles to solubility in ONE solvent.	- Fully justifies solubility in both solvents with reference to polarity, relative strength of attractive forces, and need to overcome existing forces.

NO	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4 a	2m	3m	$\begin{gathered} 2 \mathrm{e} \\ \text { (minor error) } \end{gathered}$	2 e

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Evidence \& Achievement \& Merit \& Excellence \\
\hline \begin{tabular}{l}
THREE \\
(a)
\end{tabular} \& \& - TWO Lewis structures. OR TWO shapes correct. \& - TWO correct Lewis structures linked to correct shapes. \& \\
\hline (b) \& \begin{tabular}{l}
\(\mathrm{N}_{2} \mathrm{O}\) has two regions of electron density around the central (red) N atom, while hydrazine has four regions of electron density around the (red) N atom. These regions arrange with maximum separation to minimise repulsion, giving \(\mathrm{N}_{2} \mathrm{O}\) a parent geometry of linear and a bond angle of \(180^{\circ}\). \\
\(\mathrm{N}_{2} \mathrm{H}_{4}\) has a parent geometry of tetrahedral and a bond angle of \(109.5^{\circ}\) about each N atom. \(\mathrm{N}_{2} \mathrm{O}\) has two bonding and zero non-bonding regions so an overall shape of linear, while \(\mathrm{N}_{2} \mathrm{H}_{4}\) has three bonding and one non-bonding regions about each nitrogen atom, giving an overall shape of trigonal pyramid.
\end{tabular} \& \begin{tabular}{l}
- Identifies the correct number of bonding and non-bonding regions for ONE molecule. \\
OR \\
Recognises electron density regions arranged in position of max separation / min repulsion.
\end{tabular} \& - Links total number of bonding regions to parent geometry and bond angle for ONE molecule using repulsion theory. \& - Justifies shape and bond angle of both molecules, with reference to all relevant factors. \\
\hline (c)(i)

(ii) \& \begin{tabular}{l}
Bond breaking:
$$
\begin{aligned}
& 4 \times \mathrm{C}-\mathrm{H}=4 x \\
& 2 \times \mathrm{O}=\mathrm{O}=2 \times 495=990
\end{aligned}
$$

Total: $\mathbf{9 9 0}+\mathbf{4 x} \mathrm{kJ} \mathrm{mol}^{-1}$

Bond making:
$$
\begin{aligned}
& 2 \times \mathrm{C}=\mathrm{O}=2 \times 805=1610 \\
& 4 \times \mathrm{O}-\mathrm{H}=4 \times 463=1852
\end{aligned}
$$

Total: $3462 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$$
\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{H}=\sum \text { bond energies }(\text { bonds broken })-\sum \text { bond energies (bonds formed) } \\
& -802=990+4 x-3462 \\
& -802=4 x-2472 \\
& 1670=4 x \\
& \boldsymbol{x}=\mathbf{4 1 8} \mathbf{~ k J ~ m o l}^{-1} \\
& n\left(\mathrm{CH}_{4}\right)=\frac{1660}{802}=2.07 \mathrm{~mol} \\
& m\left(\mathrm{CH}_{4}\right)=n \times M=2.07 \times 16=33.1 \mathrm{~g}
\end{aligned}
$$

 \&

- Correctly calculates total bonds formed.

OR

Gives a correct expression for bonds broken.

 \&

- Correct process with minor error (e.g. counting bonds).

- Correct answer.
\end{tabular} \& - Correct answer with unit.

\hline
\end{tabular}

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-7$	$8-13$	$14-18$	$19-24$

