Assessment Schedule – 2021

Mathematics and Statistics: Apply calculus methods in solving problems (91262)

Evidence

Q ONE	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$f'(x) = 12x^{2} - 4x - 7$ $f'(3) = 12(3)^{2} - 4(3) - 7$ f'(3) = 89	Derivative found and gradient evaluated.		
(b)	$f'(x) = \frac{3x^2}{2} + \frac{1}{2}$ $f'(2) = \frac{3(2)^2}{2} + \frac{1}{2}$ $f'(2) = 6.5$ $f(x) = \frac{x^3}{2} + \frac{x}{2}$ $f(2) = \frac{(2)^3}{2} + \frac{(2)}{2}$ $f(2) = 5$ Tangent at point (2,5) with a slope of 6.5 $(y - y_1) = m(x - x_1)$ (y - 5) = 6.5(x - 2) y = 6.5x - 8	Correct derivative.	Correct equation of the tangent.	
(c)(i)	V(t) = 3520 $3520 = -11(t)^{2} + 528t$ $0 = -11(t)^{2} + 528t - 3520$ t = 8, 40 V'(t) = -22t + 528 V'(8) = -22(8) + 528 V'(8) = 352 V'(40) = -22(40) + 528 V'(40) = -352	Expression found for $\frac{\mathrm{d}V}{\mathrm{d}t}$.	Rates of change found.	
(c)(ii)	V'(t) = -22t + 258 V' = 0 0 = -22t + 528 t = 24 V(24) = -11(24) + 528(24) V(24) = 6336	Derivative found and set to 0.	Max daily viewers found.	

(c)(iii)	$V' = 4.8t^2 - 260t + 2900$ 0 = 4.8t ² - 260t + 2900 t = 15.71 or 38.46	<i>t</i> values of turning points found.	Coordinates of minimum point found.	Coordinates of both turning points found, statement regarding monetisation.
	t = 15.71, V = 19678 t = 38.46, V = 10264 (or 10263) Once this curve reaches $V = 10000$, it			T1: Excellence criteria satisfied with one aspect missing.
	never again falls below 10 000			T2: Justification from:
	Increasing when: $t < 15.71$ and $t > 38.46$			Graph of function or gradient function, gradient
	Decreasing when: 15.71 < <i>t</i> < 38.46			on each side of the points, second derivative or substitution in to the function.

Evidence Statement

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Attempt at one question.	l of u	2 of u	3 of u	l of r	2 of r	T1	T2

Q TWO	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$\int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{1} \int_{1$	Correct shape and orientation of curve OR correct <i>x</i> -intercepts.	Correct shape and orientation of curve AND correct <i>x</i> -intercepts.	
(b)	$f'(x) = 3 + 2cx - 6x^{2}$ 3 + 2c(2) - 6(2) ² = -5 4c = 16 c = 4	Derivative found and equated to -5.	<i>c</i> evaluated.	
(c)(i)	a(t) = -9.8 v(t) = -9.8t + C If $t = 0$ then $v(0) = 2.8$ v(t) = -9.8t + 2.8 v(1) = -9.8(1) + 2.8 $v(1) = -7 \text{ m s}^{-1}$	Anti-differentiated including constant of integration.	Velocity found.	

(c)(ii)	v(1) = -9.8(1) + 2.8 $v(1) = -22.68 \text{ m s}^{-1}$ -22.68 = -9.8t + 2.8 $t = \frac{-22.68 - 2.8}{-9.8}$ t = 2.6 seconds $h(t) = -\frac{9.8}{2}t^2 + 2.8t + C$	Anti-differentiated to find $h(t)$ with unknown constant of integration OR velocity equation set to 0.	Time of impact found OR time of max height.	T1: Correct answer with some IMS T2: Correct answer with clear correct statements.
	When $t = 2.6$ seconds $h(t) = 0$ (at the water) $0 = -\frac{9.8}{2}(2.6)^2 + 2.8(2.6) + C$			
	C = 25.844 m or 25.84 m (2 d.p.) The cliff is 25.84 m above the water.			
	v(t) = -9.8t + 2.8			
	Top of the jump $v(t) = 0$ 0 = -9.8t + 2.8			
	$t = \frac{2.8}{9.8}$			
	t = 0.2857 seconds (4 d.p.) t = 0.29 seconds (2 d.p.)			
	$h(t) = -\frac{9.8}{2}t^2 + 2.8t + 25.84$			
	$h(0.29) = -\frac{9.8}{2}(0.29)^2 + 2.8(0.29) + 25.84$			
	h(0.29) = 26.24 (2 d.p.)			
	Maximum height above water = 26.24 m			

Evidence Statement

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Attempt at one question.	l of u	2 of u	3 of u	1 of r	2 of r	T1	T2

Q THREE	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$f(x) = \frac{6x^3}{3} + \frac{5x^2}{2} - x + c$ f(1) = 2.5 implies that c = -1 $f(2) = 2(-2)^3 + \frac{5(-2)^2}{2} - (-2) - 1$ f(2) = 23 Point is (2,23)	Anti-differentiation correct apart from constant term.	Co-ordinates correct.	
(b)	$s(t) = 0.1t^3 + t$ s(3) = 5.7 (m)	Correct distance.		
(c)	Red curve. Accept any intercepts with axes.	Negative cubic shape. OR Positive cubic shape with correct turning points.	Negative cubic shape and turning points correctly located.	

(d)(i)	$A = \text{Area of Triangle} + \text{Area of Rectangle}$ $A_T = \frac{(9-y)(2x)}{2} + 2xy$ $A_T = \frac{(9-(-x^2+9))(2x)}{2} + 2x(-x^2+9)$ $A_T = -x^3 + 18x$ $A_T = -x^3 + 18x$ $A_T = -3x^2 + 18$ At max, $A_T = 0$ $x^2 = \frac{18}{3}$ $x = \sqrt{6}$ $y = -(\sqrt{6})^2 + 9$ $y = 3$ so the height of the wall is 3 $(A_T = 12\sqrt{6} \text{ or } 29.39)$ Possible justifications of the maximum: • $A''(\sqrt{6}) = -14.7 < 0$ • $A'(2) = +6, A'(3) = -9$, so slope changes from exercise	Their area expression differentiated consistently.	Values for <i>x</i> and / or <i>y</i> found.	Height of wall clearly stated AND Justification from: Graph of function, or gradient function, gradient on each side of the points, second derivative or substitution in to the function.

	$A_{T} = \frac{(d-y)(2}{2}$ $A_{T} = \frac{(d-(-kx))}{2}$ $A_{T} = -kx^{3} + 2dx$ $A_{T} = -3kx^{2} + 2dx$ $x^{2} = \frac{2d}{3k}$ $x = \sqrt{\frac{2d}{3k}}$ $y = -k\left(\sqrt{\frac{2d}{3k}}\right)^{2}$ $y = \frac{-2d}{3} + dx$ $y = \frac{d}{3}$ $A_{Triangle} = \frac{(d-x)}{3}$ $A_{Triangle} = \frac{(d-x)}{3}$ $A_{Rectangle} = \frac{2d}{3}\sqrt{2}$ $A_{Rectangle} = 2kx$ $A_{Rectangle} = 2dx$ $A_{Rectangle} = 2dx$	$\frac{\binom{2}{2} + d}{\binom{2}{2}} (2x)$ $\frac{\binom{2}{2}}{\binom{2}{3}} (2x)$ $\frac{\binom{d}{3}}{\binom{2}{3}} (2\sqrt{\frac{2d}{3k}})$ $\frac{\binom{2d}{3k}}{\sqrt{\frac{2d}{3k}}} (\frac{d}{3})$		formed and correctly differentia		ound.	separa	ctangle found tely and to be equal.
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response no relevant		1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0-6	7 – 13	14 - 19	20 - 24