Assessment Schedule - 2021

Calculus: Apply differentiation methods in solving problems (91578)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \mathrm{e}^{3 x} \sin (2 x)+\mathrm{e}^{3 x} \cos (2 x) \cdot 2$	Correct derivative.		
(b)(i) (ii)	(1) $x<2, x=4$ (2) $3<x<6$ 3	2 out of 3 correct responses.		
(c)	$\begin{aligned} & y=(2 x+3) \mathrm{e}^{x^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{x^{2}}+(2 x+3)(2 x) \mathrm{e}^{x^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{x^{2}}(1+x(2 x+3)) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{x^{2}}\left(2 x^{2}+3 x+1\right) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { for stationary points. } \\ & 2 \mathrm{e}^{x^{2}}=0 \text { has no solutions since } 2 \mathrm{e}^{x^{2}}>0 \\ & 2 x^{2}+3 x+1=0 \\ & x=-\frac{1}{2} \text { or } x=-1 \end{aligned}$	Correct derivative.	Correct solution with correct derivative.	
(d)	$\begin{aligned} & x=t^{2}+3 t \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 t+3 \\ & y=t^{2} \ln (2 t-3) \\ & \frac{\mathrm{d} y}{\mathrm{~d} t}=2 t \ln (2 t-3)+\frac{2 t^{2}}{2 t-3} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 t \ln (2 t-3)+\frac{2 t^{2}}{2 t-3}}{2 t+3} \\ & \operatorname{At}(10,0): t^{2}+3 t=10 \\ & t^{2}+3 t-10=0 \\ & (t+5)(t-2)=0 \\ & t=-5 \text { or } t=2 \\ & \text { Since } t>\frac{3}{2}, t=2 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 \ln (1)+8}{7} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{8}{7} \end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} t} \text { correct. }$	$\frac{\mathrm{d} y}{\mathrm{~d} t}$ correct And $t^{2}+3 t=10$ solved to find $t=-5 \text { or } t=2$	T1: Correct solution with correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$

(e)	$\begin{aligned} V & =\pi r^{2} h \\ & =\pi r^{2}(3-2 r) \\ & =3 \pi r^{2}-2 \pi r^{3} \\ \frac{\mathrm{~d} V}{\mathrm{~d} r} & =6 \pi r-6 \pi r^{2} \end{aligned}$ At maximum, $\frac{\mathrm{d} V}{\mathrm{~d} r}=0$ $\begin{aligned} & 6 \pi r(1-r)=0 \\ & r=0(\text { no }) \therefore r=1 \\ & V=\pi 1^{2}(3-2 \times 1)=\pi \\ & \frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=6 \pi-12 \pi r \end{aligned}$ When $r=1, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} r^{2}}=-6 \pi<0$ Therefore $V=\pi$ is maximum volume.	Correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} r}$	Correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} r}$ and finds $r=1$.	T1: Correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} r}$ and shows that $V=\pi$ but does not prove it is the maximum volume with either the first or second derivative test. T2: Correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} r}$ and correct proof.

NØ	N1	$\mathbf{N 2}$	$\mathbf{A 3}$	$\mathbf{A 4}$	$\mathbf{M 5}$	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1 u	2 u	3 u	1 r	2 r	T 1	T2 or two T1

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5\left(1-x^{2}\right)^{4} \times(-2 x)$	Correct derivative.		
(b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+1) 2 x-x^{2}}{(x+1)^{2}} \\ & =\frac{x^{2}+2 x}{(x+1)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow x(x+2)=0 \\ & x=0 \text { or } x=-2 \end{aligned}$	Correct solutions with correct derivative.		
(c)	$\begin{aligned} & y=\left(x^{2}+3 x+2\right) \cos 3 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=(2 x+3) \cos 3 x-\left(x^{2}+3 x+2\right) 3 \sin 3 x \\ & \text { Crosses } y \text {-axis } \Rightarrow x=0, y=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \end{aligned}$ Normal gradient is $\frac{-1}{3}$ Equation of normal: $\begin{aligned} & y-2=\frac{-1}{3}(x-0) \\ & y=\frac{-1}{3} x+2 \\ & 3 y+x-6=0 \end{aligned}$	Correct derivative.	Correct solution with correct derivative.	
(d)		Correct expression for $\frac{\mathrm{d} r}{\mathrm{~d} t}$.	Correct solution with correct $\frac{\mathrm{d} r}{\mathrm{~d} t}$.	

(e)	$\begin{aligned} & y=\sqrt{2 x-4} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{2 x-4}} \end{aligned}$ Gradient of tangent $=\frac{y-1}{x+2}$ $\frac{1}{\sqrt{2 x-4}}=\frac{\sqrt{2 x-4}-1}{x+2}$ $x+2=2 x-4-\sqrt{2 x-4}$ $\sqrt{2 x-4}=x-6$ $2 x-4=x^{2}-12 x+36$ $x^{2}-14 x+40=0$ $(x-4)(x-10)=0$ $x=4 \text { or } x=10$ Rejecting $x=4$ by checking the surd equation $x=10 \quad \sqrt{16}=4 \quad$ True $x=4 \quad \sqrt{4}=-2 \quad$ False One solution: $x=10$ Therefore, the coordinates of point P are $(10,4)$ OR Rejecting $x=4$ by checking the gradient: $\operatorname{At}(10,4), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{16}}=\frac{1}{4}$ Gradient: $\frac{y-1}{x+2}=\frac{3}{12}=\frac{1}{4}$ $\operatorname{At}(4,2), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{4}}=\frac{1}{2}$ Gradient: $\frac{y-1}{x+2}=\frac{1}{6}$ One solution: $x=10$ Therefore, the coordinates of point P are $(10,4)$	Correct derivative: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{2 x-4}}$	Correct derivative: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{2 x-4}}$ and $\sqrt{2 x-4}=x-6$	T1: Correct solution with correct derivative: P (10,4) without any justification for $x \neq 4$ T2: Correct solution with correct derivative: P (10,4) $x \neq 4$ must be justified with respect to either the surd equation or the gradient of the tangent.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1 u	2 u	3 u	1 r	2 r	T 1	

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+1\right)\left(-\operatorname{cosec}^{2} x\right)-(\cot x)(2 x)}{\left(x^{2}+1\right)^{2}}$	Correct derivative.		
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}-1$ At stationary point, derivative $=0$. $\begin{aligned} & \frac{2}{\sqrt{x}}=1 \\ & x=4 \quad \text { Coordinates are }(4,6) . \end{aligned}$	Correct solution with correct derivative.		
(c)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\left(x^{2}+4\right)-x(2 x)}{\left(x^{2}+4\right)^{2}} \\ & =\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}} \end{aligned}$ Increasing when $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$ $\begin{aligned} & \frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}>0 \\ & 4-x^{2}>0 \\ & -2<x<2 \end{aligned}$	$\text { Correct } \frac{\mathrm{d} y}{\mathrm{~d} x}$	Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and identifies -2 and 2 as the boundaries of the interval required.	T1: Correct solution with correct derivative.
(d)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{(4 x-k) 4-(4 x+k) 4}{(4 x-k)^{2}} \\ & =\frac{16 x-4 k-16 x-4 k}{(4 x-k)^{2}} \\ & =\frac{-8 k}{(4 x-k)^{2}} \end{aligned}$ When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-8}{27}$ $\begin{aligned} & \frac{-8 k}{(12-k)^{2}}=\frac{-8}{27} \\ & \frac{k}{(12-k)^{2}}=\frac{1}{27} \\ & 27 k=144-24 k+k^{2} \\ & k^{2}-51 k+144=0 \\ & k=48 \text { or } k=3 \end{aligned}$	Correct derivative.	Correct solution with correct derivative.	

(e)	$\begin{aligned} & \cos \theta=\frac{h}{S} \\ & S^{2}=h^{2}+r^{2} \\ & S=\sqrt{h^{2}+r^{2}} \end{aligned}$ k and r are constant $\begin{aligned} & I=\frac{k \cos \theta}{S^{2}} \\ & I=\frac{k \frac{h}{S}}{S^{2}} \\ & \\ & =\frac{k h}{S^{3}} \\ & I=\frac{k h}{\left(h^{2}+r^{2}\right)^{\frac{3}{2}}} \\ & \frac{\mathrm{~d} I}{\mathrm{~d} h}=\frac{\left(h^{2}+r^{2}\right)^{\frac{3}{2}} k-k h\left(\frac{3}{2}\right)\left(h^{2}+r^{2}\right)^{\frac{1}{2}}(2 h)}{\left(h^{2}+r^{2}\right)^{3}} \\ & \frac{\mathrm{~d} I}{\mathrm{~d} h}=\frac{k\left(h^{2}+r^{2}\right)^{\frac{3}{2}}-3 k h^{2}\left(h^{2}+r^{2}\right)^{\frac{1}{2}}}{\left(h^{2}+r^{2}\right)^{3}} \\ & \frac{\mathrm{~d} I}{\mathrm{~d} h}=\frac{k\left(h^{2}+r^{2}\right)^{\frac{1}{2}}\left(h^{2}+r^{2}-3 h^{2}\right)}{\left(h^{2}+r^{2}\right)^{3}} \\ & \frac{\mathrm{~d} I}{\mathrm{~d} h}=\frac{k\left(r^{2}-2 h^{2}\right)}{\left(h^{2}+r^{2}\right)^{\frac{5}{2}}} \\ & \frac{\mathrm{~d} I}{\mathrm{~d} h}=0 \Rightarrow k\left(r^{2}-2 h^{2}\right)=0 \\ & 2 h^{2}=r^{2} \\ & h^{2}=\frac{r^{2}}{2} \\ & h=\frac{r}{\sqrt{2}} \end{aligned}$	Correct expression for $\frac{\mathrm{d} I}{\mathrm{~d} h}$	T2: Correct proof with correct derivative

NØ	N1	N2	A3	$\mathbf{A 4}$	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1 u	2 u	3 u	1 r	2 r	T1	T 2

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-6$	$7-12$	$13-18$	$19-24$

