Assessment Schedule - 2022

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Evidence

Q	Evidence				Achievement	Merit	Excellence
ONE (a)	Molecule	NH_{3}	CO_{2}	N_{2}	- Three Lewis structures. OR Three shapes correct.		
	Lewis diagram		$\mathrm{O}=\mathrm{C}=0$: $\mathrm{N} \equiv \mathrm{N}$:			
	Name of shape	trigonal pyramid	linear	linear			
(b)	Freon-11 has 4 regions of electron density around the central carbon atom, while sulfur dioxide has 3 regions around the central sulfur atom. In both molecules these regions of electron density repel to maximum separation. This gives freon-11 a tetrahedral parent geometry and bond angles of 109.5°, while sulfur dioxide has a parent geometry of trigonal planar and bond angles of 120°. As all regions in freon-11 are bonding regions the overall shape is tetrahedral, while in sulfur dioxide two of the regions are bonding regions, while one is non-bonding, giving it an overall shape of bent.				- Identifies the correct number of bonding and non-bonding regions for ONE molecule. - Recognises electron density regions arranged in position of max separation / min repulsion.	- Links total number of bonding regions to parent geometry and bond angle for ONE molecule using repulsion theory.	- Justifies shape of both molecules with reference to all relevant factors.

NØ	N1	N2	A3	A4	M5	M6	E7
No response. no relevant evidence.	1a	2 a	3 a	4 a	2 m	E8	

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	Bonds broken: $\begin{aligned} & 4 \times \mathrm{C}-\mathrm{Cl}=4 x \\ & 1 \times \mathrm{H}-\mathrm{F}=567 \end{aligned}$ Total: $567+4 x \mathrm{~kJ} \mathrm{~mol}^{-1}$ Bonds formed: $\begin{aligned} & 3 \times \mathrm{C}-\mathrm{Cl}=3 x \\ & 1 \times \mathrm{C}-\mathrm{F}=485 \\ & 1 \times \mathrm{H}-\mathrm{Cl}=431 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \text { Total: } \mathbf{9 1 6}+\mathbf{3} \boldsymbol{x} \mathbf{~ k J ~ m o l}^{-1} \\ & \Delta_{\mathrm{r}} \mathrm{H}=\Sigma \text { bond energies (bonds broken) }-\Sigma \text { bond energies (bonds formed) } \\ & -21=567+4 x-(916+3 x) \\ & -21=-349+x \\ & x=328 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ Can also be solved using net number of $\mathrm{C}-\mathrm{Cl}$ bonds.	- Correctly calculates bonds broken or bonds formed OR Correct process with a major error (e.g., rearranging equation, missing a bond type).	- Correct process with a minor error (e.g., counting bonds, incorrect sign).	- Correct answer with unit.
(ii)	$\mathrm{CCl}_{3} \mathrm{~F}$ - polar $\quad \mathrm{CCl}_{4}-$ non-polar	- Identifies polarity of both molecules.		
(iii)	Both freon-11 and carbon tetrachloride have tetrahedral shapes. Both molecules contain polar $\mathrm{C}-\mathrm{Cl}$ bonds due to the difference in electronegativity between the two atoms, while freon-11 also contains a polar C-F bond. Due to the symmetry of carbon tetrachloride, the dipoles cancel out and the molecule is non-polar. In freon-11, despite the tetrahedral shape, the difference in polarity of the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{F}$ bonds mean the different (sized) bond dipoles cannot cancel out. This means freon-11 is a polar molecule.	- Identifies a difference in electronegativity between atoms. OR Identifies bond dipole cancellation in one molecule.	- Links symmetry / asymmetry of dipole arrangement to dipole cancellation in one molecule.	- Compares and contrasts polarity of both molecules, with reference to electronegativity differences between atoms
(b)	$\begin{aligned} & n\left(\mathrm{O}_{3}\right)=\frac{m}{M}=\frac{126}{48}=2.625 \mathrm{~mol} \\ & \text { Energy }=\Delta_{\mathrm{r}} H \times n=\frac{285}{2} \times 2.625=374 \mathrm{~kJ} \text { released } \end{aligned}$	- One step of process correct.	- Correct answer.	

NCEA Level 2 Chemistry (91164) 2022 — page 4 of 7

(c)(i) Mole (ii) Com force at ro the s	Molecular Compound A is a molecular substance which has weak intermolecular forces existing between molecules. As these forces of attraction are weak, at room temperature there is sufficient heat energy to break them, allowing the substance to evaporate.			- Identifies molecular. AND Identifies boiling point is related to strength of attractive forces. OR Identifies intermolecular forces present.		- Links strength of intermolecular forces to low energy requirement for evaporation		
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response. no relevant evidence.	1a	2a	3a	4 a	3 m	4 m	2 e with minor error	2 e

Q	Evidence				Achievement	Merit	Excellence
THREE (a)	Solid	Type of solid	Type of particle	Attractive forces between particles	- Two rows or two columns correct.	- Table correct.	
	$\begin{aligned} & \text { Freon-11 } \\ & \mathrm{CCl}_{3} \mathrm{~F}(s) \\ & \hline \end{aligned}$	Molecular	Molecules	Intermolecular forces			
	$\begin{aligned} & \text { Diamond } \\ & \mathrm{C}(s) \\ & \hline \end{aligned}$	Covalent network	Atoms	Covalent bonds			
	Lithium bromide $\operatorname{LiBr}(s)$	Ionic	Ions	Ionic bonds			
(b)	In order to conduct electricity, a substance must possess charged particles that are free to move. Diamond is made up of a 3D-network of carbon atoms covalently bonded to each other (in a tetrahedral array). Each carbon is bonded to 4 others. This means there are no valence electrons free to move throughout the structure, and diamond does not conduct electricity. Graphite is a 2D-covalent network substance. It consists of layers of carbon atoms, bound in hexagonal rings by strong covalent bonds. Each carbon is bonded to 3 others. This means there are (delocalised) valence electrons free to move throughout the structure, allowing graphite to conduct electricity.				- Describes structure of diamond. OR Graphite. - Identifies mobile free charged particles are required for conductivity.	- Links conductivity / non-conductivity to presence / absence of free valence electrons in substance.	- Comprehensively explains conductivity of diamond and graphite.

(c)(i) Exothermic.

Because the change in enthalpy $\left(\Delta_{r} H\right)$ is negative / heat energy is released / products have less energy than reactants / bonds broken.
(ii) $\quad n(\mathrm{LiBr})=20 / 86.8=0.230 \mathrm{~mol}$

Energy $=n \times \Delta_{r} H=0.230 \times 48.8=11.2 \mathrm{~kJ}$
$n(\mathrm{KBr})=\frac{E}{\Delta_{\mathrm{r}} H}=\frac{11.2}{19.9}=0.563 \mathrm{~mol}$
$m(\mathrm{KBr})=n \times M=0.563 \times 119=67.0 \mathrm{~g}$
(iii)

The dissolution of LiBr is exothermic so the solution will be warm, while the dissolution of KBr is endothermic so the solution will be cool.
(iv)

Lithium bromide is an ionic compound. When placed in water, the negative pole of water molecules attract the positive lithium $\left(\mathrm{Li}^{+}\right)$ions, and the positive pole attracts the negative bromide (Br^{-}) ions.
The strength of this attractive force is sufficiently strong to overcome the ionic bonds within the ionic lattice, allowing the lattice to be broken down, and LiBr to dissolve.

Adapted from: www.saddlespace.org/whittakerm/science/cms_page/view/7795247

- Correct reaction type with reason.
- Correct number of moles of LiBr .
OR
Correct mass of KBr from incorrect number of moles.
- Correctly identifies LiBr solution is warm while KBr is cool
- Identifies attractions are required between water and the substance ($\mathrm{LiBr} \mathrm{)}$ for it to be soluble.
OR
Diagram shows water dissolving ionic solid with hydrated ions.
- Correct energy change OR
Correct mass of KBr from incorrect energy change.
- Correctly links endo / exothermic nature of processes to temperature of solutions.
- Links relative strength of the attractive forces between water and the ions in LiBr to solubility.
- Correct mass of KBr calculated.
- Fully justifies solubility of LiBr with use of diagram to illustrate answer.

$\mathbf{N Ø}$	$\mathbf{N 1}$	$\mathbf{N 2}$	$\mathbf{A 3}$	A4	M5	M6	E7
No response. no relevant evidence.	1 a	2 a	3 a	4 a	3 m	4 m	E8

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-7$	$8-13$	$14-18$	$19-24$

