Assessment Schedule - 2022
Mathematics and Statistics: Apply algebraic methods in solving problems (91261)

Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$\begin{aligned} & \frac{2 x-3}{x+4}=3 \\ & 2 x-3=3 x+12 \\ & x=-15 \end{aligned}$	Correct solution.		
(b)(i)	$\begin{aligned} & 6 x^{3} y-15 x^{2} \sqrt{y}=3 x^{2} \sqrt{y}(2 x \sqrt{y}-5) \\ & \text { Accept } 3 x^{2} y\left(2 x-\frac{5}{\sqrt{y}}\right) \end{aligned}$	Obtains $3 x^{2}(2 x y-5 \sqrt{y})$	Correct expression.	
(ii)	$\begin{aligned} \frac{6 x^{2}-x-12}{3 x^{2}-5 x-12} & =\frac{(2 x-3)(3 x+4)}{(3 x+4)(x-3)} \\ & =\frac{2 x-3}{x-3} \end{aligned}$ Don't penalise hashing a correct answer	Correct simplified fraction.		
(c)(i)	Sum of orange corners: $\mathrm{A}+\mathrm{A}+24=2 \mathrm{~A}+24$ $[\mathrm{A}+\mathrm{B}]$ Sum of blue corners: $\mathrm{A}+21+\mathrm{A}+3=2 \mathrm{~A}+24 \quad[(\mathrm{~A}+3)+(\mathrm{B}-3)]$ Therefore sum of orange corners $=$ sum of blue corners, no matter where you start the square.	Correct algebraic evidence but no conclusion.	Two sums compared and conclusion explicitly drawn.	
(ii)	Product of orange corners: $\mathrm{A}(\mathrm{~A}+24)=\mathrm{A}^{2}+24 \mathrm{~A}$ Product of blue corners: $(\mathrm{A}+21)(\mathrm{A}+3)=\mathrm{A}^{2}+24 \mathrm{~A}+63$ If these products are equal: $\mathrm{A}^{2}+24 \mathrm{~A}+63=\mathrm{A}^{2}+24 \mathrm{~A} * *$ So $63=0$ Which is impossible. Or a statement that 63 cannot equal zero. OR An argument based on the orange corners being A and B , and the blue corners being $\mathrm{A}+3$ and $\mathrm{B}-3$, leading to $\begin{aligned} & 3 \mathrm{~B}-3 \mathrm{~A}-9=0 \\ & \mathrm{~B}-\mathrm{A}=3 \# \# \end{aligned}$ This cannot true if B is on a different row, and, as this is not true, the products cannot be equal. [or equivalent arguments with different valid expressions for the corners]		Correct algebraic evidence up to line **. OR Simplified relationship between A and B (line \#\#) but no conclusion	Correct and complete algebraic reasoning. OR Correct algebraic evidence with conclusion.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$\begin{aligned} & \left(x-\frac{1}{3}\right)\left(x+\frac{2}{7}\right) \\ & =(3 x-1)(7 x+2) \\ & =21 x^{2}-x-2 \\ & \mathrm{a}=21, \mathrm{~b}=-1, \mathrm{c}=-2 \end{aligned}$	Correct values of a, b, and c .		
(b)(i) (ii)	$(-12)^{2}-4(2)(7)=88$ $\begin{aligned} & \text { So }(-12)^{2}-4(2)(k)[=0] \\ & 8 k=144 \\ & k=18 \end{aligned}$ accept use of inequality	Correct discriminant OR substitution made (line 1)	Correct value of k.	
(c)	$\begin{aligned} & \sqrt{2 x+3}=3 x \\ & 2 x+3=9 x^{2} \\ & 9 x^{2}-2 x-3=0 \\ & x=0.6991 \text { or } x=-0.4768(4 \mathrm{sf}) \end{aligned}$	Obtains correct quadratic.	Obtains both correct solutions.	
(d)(i)	$\begin{aligned} & \mathrm{f} x^{2}+\mathrm{g} x+\mathrm{h}=\mathrm{h} x^{2}+\mathrm{g} x+\mathrm{f} \\ & (\mathrm{f}-\mathrm{h}) x^{2}+(\mathrm{h}-\mathrm{f})=0 \\ & (\mathrm{f}-\mathrm{h})\left(x^{2}-1\right)=0 \\ & x^{2}=1 \\ & x=1 \text { or } x=-1 \end{aligned}$ Accept $\pm \sqrt{\frac{-(h-f)}{(f-h)}}$ or equivalent.		Correct working to obtain one solution only.	Both correct solutions obtained.

(ii)	Roots of $\mathrm{Q}(x)$ are $x=\frac{-\mathrm{g} \pm \sqrt{\mathrm{g}^{2}-4 \mathrm{fh}}}{2 \mathrm{f}}$ Roots of $\mathrm{Q}^{*}(x)$ are $x=\frac{-\mathrm{g} \pm \sqrt{\mathrm{g}^{2}-4 \mathrm{hf}}}{2 \mathrm{~h}}$ If $A=\frac{-g-\sqrt{g^{2}-4 f h}}{2 f}$, then one of the roots of $\mathrm{Q}^{*}(x)$ will be $k A=k\left(\frac{-g-\sqrt{g^{2}-4 h f}}{2 h}\right)=\frac{-g-\sqrt{g^{2}-4 \mathrm{fh}}}{2 h}$ $\text { so } k=\frac{f}{h}$ OR If roots of $\mathrm{Q}(x)$ are A and B , $A B=\frac{\mathrm{h}}{\mathrm{f}}$ If roots of $\mathrm{Q}^{*}(x)$ are kA and kB , $(k A)(k B)=\frac{f}{h}$ So it follows that: $\mathrm{k}^{2} \mathrm{AB}=\mathrm{k}^{2} \frac{\mathrm{~h}}{\mathrm{f}}=\frac{\mathrm{f}}{\mathrm{~h}}$ and $\mathrm{k}^{2}=\frac{\mathrm{f}^{2}}{\mathrm{~h}^{2}}$ and $\mathrm{k}=(\pm) \frac{\mathrm{f}}{\mathrm{h}}$ OR If roots of $\mathrm{Q}(x)$ are A and B , $\mathrm{A}+\mathrm{B}=\frac{-\mathrm{g}}{\mathrm{f}}$ If roots of $\mathrm{Q}^{*}(\mathrm{x})$ are kA and kB , $\mathbf{k A}+\mathbf{k B}=\frac{-\mathrm{g}}{\mathrm{f}}$ So it follows that: $\mathrm{k}(\mathrm{~A}+\mathrm{B})=\mathrm{k}\left(\frac{-\mathrm{g}}{\mathrm{f}}\right)=\frac{-\mathrm{g}}{\mathrm{~h}} \mathrm{k}$ and $k=\frac{f}{h}$	Correct expressions for all 4 roots obtained (may be combined) OR $A B=\frac{h}{f}$ OR $\mathrm{A}+\mathrm{B}=\frac{-\mathrm{g}}{\mathrm{f}}$	Correct expression involving k as function of f,g and / or h OR Finds $k=\frac{h}{f}$ [this results from saying the root of $\mathrm{Q}(x)$ is kA and that of $\mathrm{Q}^{*}(x)$ is A]	Finds $k=\frac{f}{h}$

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

NCEA Level 2 Mathematics and Statistics (91261) 2022 - page 5 of 6 - Version 5

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	$\sqrt{49 y^{36}}=7 y^{18}$	Correct response.		
(ii)	$\begin{aligned} & x \log (2)=\log (2022) \\ & x=10.98 \end{aligned}$ Accept $\log _{2}(2022)$	Correct solution.		
(b)	$\begin{aligned} \log (3 a)+ & 2 \log \left(\frac{a}{6}\right) \\ & =\log (3 a)+\log \left(\left(\frac{a}{6}\right)^{2}\right) \\ & =\log \left(3 a\left(\frac{a}{6}\right)^{2}\right) \\ & =\log \left(\frac{a^{3}}{12}\right) \end{aligned}$	Fraction not correctly simplified but otherwise correct.	Correct expression obtained with fraction correctly simplified.	
(c)(i)	$\begin{aligned} & \log _{2}(x-\mathrm{a})-\log _{2}(x+\mathrm{a})=\mathrm{c} \\ & \log _{2} \frac{x-\mathrm{a}}{x+\mathrm{a}}=\mathrm{c} \\ & \frac{x-\mathrm{a}}{x+\mathrm{a}}=2^{\mathrm{c}} \\ & x-\mathrm{a}=2^{\mathrm{c}}(x+\mathrm{a})=x 2^{\mathrm{c}}+\mathrm{a} 2^{\mathrm{c}} \\ & x\left(1-2^{\mathrm{c}}\right)=\mathrm{a}+\mathrm{a} 2^{\mathrm{c}}=\mathrm{a}\left(1+2^{\mathrm{c}}\right) \\ & \text { so, } x=\mathrm{a} \frac{1+2^{\mathrm{c}}}{1-2^{\mathrm{c}}} \end{aligned}$	Log expressions combined correctly.	Correct exponential equation obtained (line $3)$.	Correct mathematical statements lead to the required expression.
(ii)	Using the expression from (c) part (i) Firstly, if x is not defined, there will be no solutions, so that means that $1-2^{\text {c }}$ $\neq 0$, so $2^{c} \neq 1$, and $c \neq 0$. Hence c cannot be zero. Secondly, if $\mathrm{a}=0$, then $x=0$, but then the logs will be undefined. Hence, a cannot be zero. [Although, in the original equation, if $\mathrm{a}=0$ and $\mathrm{c}=0$, any strictly positive x value is a solution, but the expression for x is undefined] Thirdly, for the original equation to be defined, both $x-\mathrm{a}>0$ and $\mathrm{x}+\mathrm{a}>0$ (accept one or the other, or both).		One constraint identified with reasoning.	Two constraints identified with reasoning.

NØ	N1	N2	$\mathbf{A 3}$	$\mathbf{A 4}$	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	1 t	

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-6$	$7-12$	$13-18$	$19-24$

