Assessment Schedule – 2022

Mathematics and Statistics: Apply algebraic methods in solving problems (91261) Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$\frac{2x-3}{x+4} = 32x-3 = 3x+12x = -15$	Correct solution.		
(b)(i)	$6x^{3}y - 15x^{2}\sqrt{y} = 3x^{2}\sqrt{y}\left(2x\sqrt{y} - 5\right)$ Accept $3x^{2}y\left(2x - \frac{5}{\sqrt{y}}\right)$	Obtains $3x^2(2xy-5\sqrt{y})$	Correct expression.	
(ii)	$\frac{6x^2 - x - 12}{3x^2 - 5x - 12} = \frac{(2x - 3)(3x + 4)}{(3x + 4)(x - 3)}$ $= \frac{2x - 3}{x - 3}$ Don't penalise hashing a correct answer	Correct simplified fraction.		
(c)(i)	Sum of orange corners: A + A + 24 = 2A + 24 [A + B] Sum of blue corners: A + 21 + A + 3 = 2A + 24 [(A+3) + (B - 3)] Therefore sum of orange corners = sum of blue corners, no matter where you start the square.	Correct algebraic evidence but no conclusion.	Two sums compared and conclusion explicitly drawn.	
(ii)	Product of orange corners: $A(A + 24) = A^2 + 24A$ Product of blue corners: $(A + 21)(A + 3) = A^2 + 24A + 63$ If these products are equal: $A^2 + 24A + 63 = A^2 + 24A$ ** So $63 = 0$ Which is impossible. Or a statement that 63 cannot equal zero. OR An argument based on the orange corners being A and B, and the blue corners being A + 3 and B - 3, leading to 3B - 3A - 9 = 0 B - A = 3 # This cannot true if B is on a different row, and, as this is not true, the products cannot be equal. [or equivalent arguments with different valid expressions for the corners]		Correct algebraic evidence up to line **. OR Simplified relationship between A and B (line ##) but no conclusion	Correct and complete algebraic reasoning. OR Correct algebraic evidence with conclusion.

(d)	For a rectangle M wide and N tall: Sum of orange corners: A + [A + (M - 1) + 7(N - 1)] = 2A + M + 7N - 8 Sum of blue corners: [A + 7(N - 1)] + [A + (M - 1)] = 2A + M + 7N - 8 Both sums have the same expression so are always equal. Accept alternative approaches that are valid arguments.		Reasoning valid but M and / or N used for the corners. OR Correct algebraic evidence but no conclusion.	Correct and complete reasoning with conclusion stated.
-----	--	--	--	--

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	lu	2u	3u	lr	2r	lt	2t

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$(x - \frac{1}{3})(x + \frac{2}{7})$ = (3x - 1)(7x + 2) = 21x ² - x - 2 a = 21, b = -1, c = -2	Correct values of a, b, and c.		
(b)(i)	$(-12)^2 - 4(2)(7) = 88$	Correct discriminant OR		
(ii)	So $(-12)^2 - 4(2)(k)$ [=0] 8k = 144 k = 18 accept use of inequality	substitution made (line 1)	Correct value of k.	
(c)	$\sqrt{2x+3} = 3x$ $2x+3 = 9x^{2}$ $9x^{2} - 2x - 3 = 0$ x = 0.6991 or x = -0.4768 (4sf)	Obtains correct quadratic.	Obtains both correct solutions.	
(d)(i)	$fx^{2} + gx + h = hx^{2} + gx + f$ $(f - h) x^{2} + (h - f) = 0$ $(f - h)(x^{2} - 1) = 0$ $x^{2} = 1$ $x = 1 \text{ or } x = -1$ Accept $\pm \sqrt{\frac{-(h - f)}{(f - h)}} \text{ or equivalent.}$		Correct working to obtain one solution only.	Both correct solutions obtained.

-				
(ii)	Roots of Q(x) are $x = \frac{-g \pm \sqrt{g^2 - 4fh}}{2f}$	Correct expressions for all 4 roots obtained (may be	Correct expression involving k as function of f,g	Finds $k = \frac{f}{h}$
	Roots of Q*(x) are $x = \frac{-g \pm \sqrt{g^2 - 4hf}}{2h}$	combined)	and / or h OR	
	If $A = \frac{-g - \sqrt{g^2 - 4fh}}{2f}$, then one of the roots		Finds $k = \frac{h}{f}$	
	of Q*(x) will be $\left(\begin{array}{c} q & \sqrt{a^2 - 4bf} \end{array}\right) = q & \sqrt{a^2 - 4fb}$		[this results from saying the root of $Q(x)$ is kA and	
	$kA = k\left(\frac{-g - \sqrt{g^2 - 4hf}}{2h}\right) = \frac{-g - \sqrt{g^2 - 4fh}}{2h}$		that of $Q^*(x)$ is A]	
	so $k = \frac{f}{h}$			
	OR			
	If roots of $Q(x)$ are A and B,			
	$AB = \frac{h}{f}$			
	If roots of $Q^*(x)$ are kA and kB,			
	$(\mathbf{kA})(\mathbf{kB}) = \frac{\mathbf{f}}{\mathbf{h}}$	OR h		
	So it follows that:	$AB = \frac{h}{f}$		
	$k^2 AB = k^2 \frac{h}{f} = \frac{f}{h}$			
	and $k^2 = \frac{f^2}{h^2}$ and $k = (\pm)\frac{f}{h}$			
	OR			
	If roots of $Q(x)$ are A and B,			
	$A+B = \frac{-g}{f}$			
	If roots of $Q^*(x)$ are kA and kB,	OR		
	$\mathbf{kA} + \mathbf{kB} = \frac{-g}{f}$	$A + B = \frac{-g}{f}$		
	So it follows that:			
	$k(A + B) = k\left(\frac{-g}{f}\right) = \frac{-g}{h}k$			
	and $k = \frac{f}{h}$			
•	·	•	•	•

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1u	2u	3u	lr	2r	1t	2t

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	$\sqrt{49y^{36}} = 7y^{18}$	Correct response.		
(ii)	$x \log(2) = \log(2022)$ x = 10.98 Accept $\log_2(2022)$	Correct solution.		
(b)	$\log(3a) + 2\log\left(\frac{a}{6}\right)$ $= \log(3a) + \log\left(\left(\frac{a}{6}\right)^2\right)$ $= \log\left(3a\left(\frac{a}{6}\right)^2\right)$ $= \log\left(\frac{a^3}{12}\right)$	Fraction not correctly simplified but otherwise correct.	Correct expression obtained with fraction correctly simplified.	
(c)(i)	$log_{2}(x-a) - log_{2}(x+a) = c$ $log_{2}\frac{x-a}{x+a} = c$ $\frac{x-a}{x+a} = 2^{c}$ $x-a = 2^{c}(x+a) = x2^{c} + a2^{c}$ $x(1-2^{c}) = a + a2^{c} = a(1+2^{c})$ so, $x = a\frac{1+2^{c}}{1-2^{c}}$	Log expressions combined correctly.	Correct exponential equation obtained (line 3).	Correct mathematical statements lead to the required expression.
(ii)	Using the expression from (c) part (i) Firstly, if x is not defined, there will be no solutions, so that means that $1 - 2^c \neq 0$, so $2^c \neq 1$, and $c \neq 0$. Hence c cannot be zero. Secondly, if $a = 0$, then $x = 0$, but then the logs will be undefined. Hence, a cannot be zero. [Although, in the original equation, if a = 0 and $c = 0$, any strictly positive x- value is a solution, but the expression for x is undefined] Thirdly, for the original equation to be defined, both $x - a > 0$ and $x + a > 0$ (accept one or the other, or both).		One constraint identified with reasoning.	Two constraints identified with reasoning.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	lu	2u	3u	lr	2r	lt	2t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 - 6	7 – 12	13 – 18	19 – 24