Assessment Schedule - 2022
Mathematics and Statistics: Apply calculus methods in solving problems (91262)

Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$\begin{aligned} & f^{\prime}(x)=8 x^{3}+12 x^{2}-40 x \\ & f^{\prime}(3)=8(3)^{3}+12(3)^{2}-40(3) \\ & f^{\prime}(3)=204 \end{aligned}$	Derivative found and gradient evaluated.		
(b)	$\begin{aligned} & f(x)=4 x-\frac{6 x^{2}}{2}+\frac{2 x^{3}}{3}+C \\ & \text { At }(3,4) \\ & 4=4(3)-3(3)^{2}+\frac{2(3)^{2}}{3}+C \\ & C=1 \\ & f(x)=4 x-\frac{6 x^{2}}{2}+\frac{2 x^{3}}{3}+1 \end{aligned}$	Equation of $f(x)$ found.		
(c)	$f^{\prime}(x)=2 x^{2}+3 x-20$ is decreasing when $\begin{aligned} & f^{\prime}(x)<0 \\ & 2 x^{2}+3 x-20<0 \\ & -4<x<2.5 \end{aligned}$ OR as $2.5<x<-4$ or $x<-4$ AND $x<2.5$	Derivative found and made $<0 \text { or }=0 .$	Correct interval found.	
(d)	$\begin{aligned} & f(x)-\mathrm{p} x-\mathrm{q} x^{2} \\ & f^{\prime}(x)=\mathrm{p}-2 \mathrm{q} x \\ & \text { When } x=2, f^{\prime}(x)=-6 \\ & -6=\mathrm{p}-2 \mathrm{q}(2) \\ & \text { At }(2,-10) \\ & -10=\mathrm{p}(2)-\mathrm{q}(2)^{2} \\ & -10=2 \mathrm{p}-4 \mathrm{q} \\ & \mathrm{q}=0.5 \\ & \mathrm{p}=-4 \end{aligned}$	Derivative found. AND Substitution of $x=2$ into $f^{\prime}(x)$. AND $f^{\prime}(2)=-6 \text {. }$	Two linear equations found. OR Substitution used to eliminate either p or q.	Correct solutions for BOTH p and q found.

(e)	$A=2 r h-\pi r^{2}$ Limiting constraint $2 \pi r+2 h=80$ OR $\begin{aligned} & h=40-\pi r \\ & A=2 r(40-\pi r)-\pi r^{2} \end{aligned}$ $A=80 r-3 \pi r^{2}$ $A^{\prime}=80-6 \pi r$ $A^{\prime}=0$ $0=80-6 \pi r$ $r=\frac{40}{3 \pi}=4.244 \text { (3 d.p.) }$ $\begin{aligned} \text { Max area } & =80(4.24)-3 \pi(4.24)^{2} \\ & =169.77 \mathrm{~cm}^{2}(2 \text { d.p. }) \end{aligned}$ Justification $A^{\prime \prime}=-6 \pi$ Second derivative is always negative \rightarrow max .	Sets up area equation in terms of a variable AND differentiates.	Makes $\mathrm{A}^{\prime}=0$ AND solves for r.	Finds max area, with justification. Justification from: Gradient function or Second derivative function, gradient on each side of the point.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of u	2 of r	1 of t	2 of t

Q	Evidence	Achievement	Merit	Excellence
$\begin{gathered} \text { TWO } \\ \text { (a) } \end{gathered}$	 Blue line is $f(x)$ (Answer to this Q) Red line is the original gradient function $f^{\prime}(x)$.	Negative Quartic $\left(x^{-4}\right)$ assumed. Note: If axis not relabelled, then an inverted parabola is drawn $\mathrm{f}^{\prime}(\mathrm{x})=0 \mathrm{at}$ $x=-2 \text { AND just }$ to the left of $x=2 .$	Negative Quartic ($x^{\wedge} 4$) shape with turning points lined up with x -intercepts of given gradient graph. $3 \mathrm{~min} / \mathrm{max}$ total Local max: $x=-3$ Local min : $x=-1$ Local max : $x=3.5$ A reasonable quartic shape. Note: If an inverted parabola is drawn the vertex is just to the left of $x=0$ and of good shape \rightarrow ' r '.	Local max at $x=3.5$ with a higher y-value than the local max at $x=-3$, due to steeper slope of gradient function. AND a good continuous quartic shape.
(b)	$h^{\prime}(t)-22.5-9.8 t$ At max $h^{\prime}(x)=0$ $\begin{aligned} & 0=22.5-9.8 t \\ & t=\frac{22.5}{9.8}=2.296(3 \text { d.p. }) \\ & h(2.3)=22.5(2.3)-4.9(2.3)^{2}+1=26.83 m(2 \\ & \text { d.p. }) \end{aligned}$	Derivative found and equated to 0 .	Height found.	
(c)(i) (ii) (iii)	$\begin{aligned} & P^{\prime}(t)=200 t-8 t^{3} \\ & P^{\prime}(6)=200(6)-8(6)^{3} \\ & P^{\prime}(6)=-528 \text { people } / \text { hour } \end{aligned}$ Means that 528 people per hour were leaving the game at that time. $\begin{aligned} & P^{\prime}=2 k t-8 t^{3} \\ & P^{\prime \prime}=2 k-24 t^{2} \\ & P^{\prime \prime}=2 k-24 t^{2}=0 \\ & P^{\prime \prime}=0 \text { for max } \\ & 2 k=24 t^{2} \\ & k=12 t^{2} \\ & \text { if } t=4, k=192 \end{aligned}$	$\frac{\mathrm{d} P}{\mathrm{~d} t}$ found. AND $t=6$ substitution shown. $P^{\prime \prime}$ found.	Correct interpretation. $P^{\prime \prime} \text { set }=0 \text {. }$	$P^{\prime \prime}=0$ for max. AND Solves to find $k=192$ with correct statements.

NØ	N1	N2	$\mathbf{A 3}$	$\mathbf{A 4}$	M5	M6	E7
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t

NCEA Level 2 Mathematics and Statistics (91262) 2022 - page 4 of 5

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	$\begin{aligned} & y=2 x(x-3) \\ & y=2 x^{2}-6 x \\ & y^{\prime}=4 x-6 \\ & y^{\prime}(1)=4(1)-6 \\ & y^{\prime}(1)=-2 \end{aligned}$ Equation of the tangent $\begin{aligned} & (y-4)=-2(x-1) \\ & y=-2 x-2 \end{aligned}$	Correct derivative found.	Equation of tangent found.	
(b)(i)		At least 2 gradient functions drawn correctly.		

(ii)		Gradient function sketched with no open circles on $x=0$. Note: Joins vertical line at $x=0$ on the range $\mathrm{y} \varepsilon[-1,1] \rightarrow$ ' ns '.	Gradient function sketched correctly with open circles on $x=0$.	
(iii)	The gradient function has a discontinuity, break, gap when $x=0$. Instantaneous change from negative slope to positive slope, causing undefined gradient function at $x=0$.	On the journey. e.g. $y=-x, y^{\prime}=-1$ and $y=x, y^{\prime}=1$, so at (0.0) it is not fair because gradients are not the same.	Discontinuity / gap or break at $x=0$.	Description of reasoning of why the function not being differentiable at $x=0$. Description of the issues drawing 'a tangent' at a sharp point.
(c)	$\mathrm{SA}=\sqrt{3} a^{2}+2 \sqrt{3} b^{2}$ Length of edges: $\begin{aligned} & 6 a+12 b=180 \\ & a=\frac{180-12 b}{6} \\ & a=30-2 b \\ & \mathrm{SA}=\sqrt{3} a^{2}+2 \sqrt{3} b^{2} \\ & \mathrm{SA}=\sqrt{3}(30-2 b)^{2}+2 \sqrt{3} b^{2} \\ & \mathrm{SA}=6 \sqrt{3} b^{2}-120 \sqrt{3} b+900 \sqrt{3} \\ & \mathrm{SA}^{\prime}=0 \text { for } \max \text { or min } \\ & 0=12 \sqrt{3} b-120 \sqrt{3} \\ & b=10 \\ & a=30-2 b \\ & a=10 \end{aligned}$ Justification: $\mathrm{SA}^{\prime \prime}=12 \sqrt{3}>0$ Second derivative is always positive \rightarrow minimum.	Equation for the SA is formed and substitution made to eliminate either a or b.	Derivative taken, and set $\mathrm{SA}^{\prime}=0$.	Solve for both a and b. AND Justification from: Graph of function or gradient function, gradient on each side of the points, or second derivative test.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 oft

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-7$	$8-13$	$14-18$	$19-24$

