Assessment Schedule – 2022

Mathematics and Statistics: Apply calculus methods in solving problems (91262) Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$f'(x) = 8x^3 + 12x^2 - 40x$ $f'(3) = 8(3)^3 + 12(3)^2 - 40(3)$ f'(3) = 204	Derivative found and gradient evaluated.		
(b)	$f(x) = 4x - \frac{6x^2}{2} + \frac{2x^3}{3} + C$ At (3,4) $4 = 4(3) - 3(3)^2 + \frac{2(3)^2}{3} + C$ C = 1 $f(x) = 4x - \frac{6x^2}{2} + \frac{2x^3}{3} + 1$	Equation of $f(x)$ found.		
(c)	$f'(x) = 2x^{2} + 3x - 20$ is decreasing when f'(x) < 0 $2x^{2} + 3x - 20 < 0$ -4 < x < 2.5 OR as 2.5 < x < -4 or x < -4 AND x < 2.5	Derivative found and made < 0 or = 0.	Correct interval found.	
(d)	$f(x) - px - qx^{2}$ $f'(x) = p - 2qx$ When $x = 2, f'(x) = -6$ $-6 = p - 2q(2)$ At (2,-10) $-10 = p(2) - q(2)^{2}$ $-10 = 2p - 4q$ $q = 0.5$ $p = -4$	Derivative found. AND Substitution of x = 2 into $f'(x)$. AND f'(2) = -6.	Two linear equations found. OR Substitution used to eliminate either p or q.	Correct solutions for BOTH p and q found.

(e)	$A = 2rh - \pi r^{2}$ Limiting constraint $2\pi r + 2h = 80$ OR $h = 40 - \pi r$ $A = 2r(40 - \pi r) - \pi r^{2}$ $A = 80r - 3\pi r^{2}$ $A' = 80 - 6\pi r$ A' = 0 $0 = 80 - 6\pi r$ $r = \frac{40}{3\pi} = 4.244 (3 \text{ d.p.})$ Max area = $80(4.24) - 3\pi (4.24)^{2}$ $= 169.77 \text{ cm}^{2} (2 \text{ d.p.})$ Justification $A'' = -6\pi$ Second derivative is always negative $\rightarrow \max$.	Sets up area equation in terms of a variable AND differentiates.	Makes A'= 0 AND solves for <i>r</i> .	Finds max area, with justification. Justification from: Gradient function or Second derivative function, gradient on each side of the point.
-----	---	--	---	--

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	l of r	2 of r	l of t	2 of t

NCEA Level 2 Mathematics and Statistics (91262) 2022 — page 3 of 5

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	Blue line is $f(x)$ (Answer to this Q) Red line is the original gradient function $f'(x)$.	Negative Quartic (x^{-4}) assumed. Note: If axis not relabelled, then an inverted parabola is drawn f'(x) = 0 at x = -2 AND just to the left of x = 2.	Negative Quartic (x^4) shape with turning points lined up with x-intercepts of given gradient graph. 3 min/max total Local max: $x = -3$ Local min : $x = -1$ Local max : $x = 3.5$ A reasonable quartic shape. Note: If an inverted parabola is drawn the vertex is just to the left of $x = 0$ and of good shape \rightarrow 'r'.	Local max at $x = 3.5$ with a higher y-value than the local max at $x = -3$, due to steeper slope of gradient function. AND a good continuous quartic shape.
(b)	h'(t) - 22.5 - 9.8t At max $h'(x) = 0$ 0 = 22.5 - 9.8t $t = \frac{22.5}{9.8} = 2.296 (3 \text{ d.p.})$ $h(2.3) = 22.5(2.3) - 4.9(2.3)^2 + 1 = 26.83m (2 \text{ d.p.})$	Derivative found and equated to 0.	Height found.	
(c)(i) (ii)	$P'(t) = 200t - 8t^{3}$ $P'(6) = 200(6) - 8(6)^{3}$ $P'(6) = -528 \text{ people / hour}$ Means that <u>528 people</u> per hour were <u>leaving</u> the game <u>at that time</u> .	$\frac{dP}{dt}$ found. AND t = 6 substitution shown.	Correct interpretation.	
(iii)	$P' = 2kt - 8t^{3}$ $P'' = 2k - 24t^{2}$ $P'' = 2k - 24t^{2} = 0$ $P'' = 0 \text{ for max}$ $2k = 24t^{2}$ $k = 12t^{2}$ $\text{if } t = 4, \ k = 192$	<i>P"</i> found.	<i>P</i> " set = 0.	P'' = 0 for max. AND Solves to find k = 192 with correct statements.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	l of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Q	NCEA Level 2 Mathematics a	Achievement	Merit	Excellence
THREE (a)	y = 2x(x-3) $y = 2x^{2} - 6x$ y' = 4x - 6 y'(1) = 4(1) - 6 y'(1) = -2 Equation of the tangent (y-4) = -2(x-1) y = -2x - 2	Correct derivative found.	Equation of tangent found.	
(b)(i)	$ \begin{array}{c} & f'(x) \\ & 4 & 3 & -2 & -1 & 1 & 2 & 3 & 4 \\ & 4 & -3 & -2 & -1 & 1 & 2 & 3 & 4 \\ & & & & & & & & & \\ & & & & & & & &$	At least 2 gradient functions drawn correctly.		

NCEA Level 2 Mathematics and Statistics (91262) 2022 — page 5 of 5

(ii)	$ \begin{array}{c} $	Gradient function sketched with no open circles on x = 0. Note: Joins vertical line at x = 0 on the range y ε [-1,1] \rightarrow 'ns'.	Gradient function sketched correctly with open circles on x = 0.	
(iii)	The gradient function has a discontinuity, break, gap when $x = 0$. Instantaneous change from negative slope to positive slope, causing undefined gradient function at $x = 0$.	On the journey. e.g. $y = -x$, $y'=-1$ and $y = x$, $y'=1$, so at (0.0) it is not fair because gradients are not the same.	Discontinuity / gap or break at $x = 0$.	Description of reasoning of why the function not being differentiable at $x = 0$. Description of the issues drawing 'a tangent' at a sharp point.
(c)	SA = $\sqrt{3}a^2 + 2\sqrt{3}b^2$ Length of edges: 6a + 12b = 180 $a = \frac{180 - 12b}{6}$ a = 30 - 2b SA = $\sqrt{3}a^2 + 2\sqrt{3}b^2$ SA = $\sqrt{3}(30 - 2b)^2 + 2\sqrt{3}b^2$ SA = $6\sqrt{3}b^2 - 120\sqrt{3}b + 900\sqrt{3}$ SA' = 0 for max or min $0 = 12\sqrt{3}b - 120\sqrt{3}$ b = 10 a = 30 - 2b a = 10 Justification: SA'' = $12\sqrt{3} > 0$ Second derivative is always positive \rightarrow minimum.	Equation for the SA is formed and substitution made to eliminate either <i>a</i> or <i>b</i> .	Derivative taken, and set SA'= 0.	Solve for both <i>a</i> and <i>b</i> . AND Justification from: Graph of function or gradient function, gradient on each side of the points, or second derivative test.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	l of u	2 of u	3 of u	1 of r	2 of r	l of t	2 of t

Cut Scores

Not Achieved	Achievement	Achievement Achievement with Merit	
0 – 7	8 – 13	14 – 18	19 – 24