
Assessment Schedule – 2022

Calculus: Apply differentiation methods in solving problems (91578)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\ln x \cdot \frac{1}{x}$	Correct derivative		
(b)	$f(x) = \frac{x^{2} + 1}{x}$ $f'(x) = \frac{x \cdot (2x) - (x^{2} + 1)}{x^{2}}$ $\frac{x \cdot (2x) - (x^{2} + 1)}{x^{2}} = 0$ $2x^{2} - x^{2} - 1 = 0$ $x^{2} = 1$ $x = \pm 1$ OR $f(x) = x + x^{-1}$ $f'(x) = 1 - x^{-2}$ $1 - \frac{1}{x^{2}} = 0$ $x^{2} - 1 = 0$ $x = \pm 1$	Correct solution with correct derivative Must have both solutions: $x = \pm 1$		
(c)	$y = \sqrt{x+2}$ $\frac{dy}{dx} = \frac{1}{2}(x+2)^{\frac{-1}{2}}$ $= \frac{1}{2\sqrt{x+2}}$ At $x = 0$, $\frac{dy}{dx} = \frac{1}{2\sqrt{2}}$ and $y = \sqrt{2}$ Equation of normal is $y = -2\sqrt{2}x + \sqrt{2}$ x intercept $(y=0) 0 = -2\sqrt{2}x + \sqrt{2}$ $x = \frac{1}{2}$ Coordinate of P is $\left(\frac{1}{2}, 0\right)$	Correct derivative with $\frac{dy}{dx}$ evaluated at x = 0.	Correct solution with correct $\frac{dy}{dx}$. Accept $x = \frac{1}{2}$. y = 0 can be implied in the working.	

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(d)	$\frac{dx}{dt} = 3$ $\frac{dy}{dt} = 3 - \frac{3}{3t - 1}$ $= \frac{3(3t - 1) - 3}{3t - 1}$ $= \frac{9t - 6}{3t - 1}$ $\frac{dy}{dx} = \frac{9t - 6}{3t - 1} \times \frac{1}{3}$ $= \frac{3t - 2}{3t - 1}$ $\frac{dy}{dx} = \frac{1}{2}$ $\frac{3t - 2}{3t - 1} = \frac{1}{2}$ 6t - 4 = 3t - 1 3t = 3 t = 1 $x = 5 y = 3 - \ln 2 \text{ or } 2.307$	Correct expression for $\frac{dy}{dx}$.	Correct solution with correct $\frac{dy}{dx}$.	

NCEA Level 3 Calculus (91578) 2022 - page 4 of 10

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	lu	2u	3u	lr	2r	T1	T2

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$f'(x) = 4(5x - 3)\cos 4x + 5\sin 4x$	Correct derivative.		
(b)	$y = (3x^{2} - 2)^{3}$ $\frac{dy}{dx} = 3(3x^{2} - 2)^{2}(6x)$ $At x = 2, \frac{dy}{dx} = 3600$	Correct solution with correct derivative.		
(c)	$d(t) = \frac{t^2 - 6}{2t^3}$ $v(t) = \frac{2t^3(2t) - (t^2 - 6)(6t^2)}{4t^6}$ $v(t) = \frac{36t^2 - 2t^4}{4t^6}$ $v(t) = \frac{18 - t^2}{2t^4}$ Stationary point when $v(t) = 0$ $18 - t^2 = 0$ $t = \sqrt{18} \ (= 4.24)$	Correct derivative.	Correct solution with correct derivative.	
(d)	$y = 6e^{1-0.5x}$ Area = $6xe^{1-0.5x}$ $A'(x) = 6e^{1-0.5x} + 6xe^{1-0.5x} \times -0.5$ $= 6e^{1-0.5x} - 3xe^{1-0.5x}$ $= 3e^{1-0.5x}(2-x)$ At maximum, $A'(x) = 0$ $x = 2$ Area = $12e^{1-1} = 12$	Correct derivative of $A(x)$.	Correct solution with correct derivative.	

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(e)	$(y-5)^{2} = 16(x-2)$ Method A $y-5 = 4\sqrt{x-2}$ $y = 4\sqrt{x-2} + 5$ $\frac{dy}{dx} = \frac{2}{\sqrt{x-2}}$ $\frac{dy}{dx} = 1$ $\frac{2}{\sqrt{x-2}} = 1$ $\sqrt{x-2} = 2$ $x-2 = 4$ $x = 6$ $y = 13$ Method B $2(y-5)\frac{dy}{dx} = 16$ $\frac{dy}{dx} = \frac{8}{y-5}$ $\frac{dy}{dx} = 1$ $\frac{8}{y-5} = 1$ $y = 13$ $64 = 16x - 32$ $x = 6$ Equation of tangent y - 13 = 1(x - 6)	Correct $\frac{dy}{dx}$.	Correct x and y values found (6,13) with correct $\frac{dy}{dx}$.	T1 Finds equation of tangent and both axis intercepts with correct $\frac{dy}{dx}$. T2 Correct solution with correct $\frac{dy}{dx}$.
	$y = x + 7$ Axis intercepts: (0,7) and (-7, 0) Distance RS = $\sqrt{7^2 + 7^2}$ = $\sqrt{49 \times 2}$			
	$=7\sqrt{2}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	T1	Τ2

NCEA Level 3 Calculus	(91578) 2022	page 7 of 10
-----------------------	--------------	--------------

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{4\sqrt{x}} . 2x^{\frac{-1}{2}}$	Correct derivative		
(b)(i) (ii) (iii)	x = -4, -1, 1 x = -3, x > 1 3	Two correct parts of question Three (b)		
(c)	$V = \pi \left(\frac{3}{2}h^2 + 3h\right)$ $\frac{dV}{dh} = \pi \left(3h + 3\right)$ $\frac{dV}{dt} = 20$ $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ $= \frac{1}{\pi (3h + 3)} \times 20$ At $h = 3$, $\frac{dh}{dt} = \frac{20}{12\pi}$ $= \frac{5}{3\pi} = 0.531 \mathrm{cm s^{-1}}$	Correct expressions for $\frac{dV}{dh}$ and $\frac{dV}{dt}$. $\frac{dV}{dt}$. can be implied by the expression for $\frac{dh}{dt}$.	Correct solution with correct derivative for $\frac{dh}{dt}$.	

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(d)	$y = 9x - 2 + \frac{3}{3x - 1}$ $\frac{dy}{dx} = 9 - 3(3x - 1)^{-2} \times 3$ $= 9 - \frac{9}{(3x - 1)^{2}}$ Stationary point $\frac{dy}{dx} = 0$ $9 - \frac{9}{(3x - 1)^{2}} = 0$ $9 = \frac{9}{(3x - 1)^{2}}$ $(3x - 1)^{2} = 1$ $3x - 1 = \pm 1$ $x = \frac{1 \pm 1}{3}$ $x = 0 \text{ or } x = \frac{2}{3}$ $\frac{d^{2}y}{dx^{2}} = \frac{54}{(3x - 1)^{3}}$ $x = 0 \frac{d^{2}y}{dx^{2}} = \frac{54}{(-1)^{3}} < 0$ Local max at $x = 0$ $x = \frac{2}{3} \qquad \frac{d^{2}y}{dx^{2}} = \frac{54}{(1)^{3}} > 0$ Local min at $x = \frac{2}{3}$	Correct derivative.	Correct solution with correct derivative. The nature of each turning point stated but not determined using a calculus method.	T1 Correct solution with correct derivative. The nature of each turning point determined with a first or second derivative test.

NCEA Level 3 Calculus	(91578) 2022 —	page 9 of 10
-----------------------	----------------	--------------

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(e)	Expected coverage Total time = time (HP) + time (PS) Method A Let $x = \text{distance PQ}$ $T = \frac{4-x}{10} + \frac{\sqrt{x^2 + 4}}{6}$ $\frac{dT}{dx} = \frac{-1}{10} + \frac{1}{2}(x^2 + 4)^{\frac{-1}{2}}.2x}{6}$ $\frac{dT}{dx} = \frac{-1}{10} + \frac{x}{6\sqrt{x^2 + 4}}$ For maximum/minimum time, $\frac{dT}{dx} = 0$ $\frac{1}{10} = \frac{x}{6\sqrt{x^2 + 4}}$ $6\sqrt{x^2 + 4} = 10x$ $\sqrt{x^2 + 4} = \frac{10}{6}x$ $x^2 + 4 = \frac{25}{9}x^2$ $4 = \frac{16}{9}x^2$ $\frac{36}{16} = x^2$ x = 1.5 4 - 1.5 = 2.5 Megan should travel 2.5 km along the path before cutting across the park. Method B Let $x =$ distance HP $T = \frac{x}{10} + \frac{\sqrt{((4-x)^2 + 4)}}{6}$	Achievement (u)	Merit (r) Correct $\frac{dT}{dx}$.	Excellence (t)T1 Method A $x = 1.5$ found with correct derivativeORT1 Method B $x = 2.5$ or 5.5found (5.5 not discarded) with correct derivative.T2Correct solution with correct derivative.
	$T = \frac{x}{10} + \frac{\sqrt{\left(\left(4-x\right)^2 + 4\right)}}{6}$ $\frac{dT}{dx} = \frac{1}{10} + \frac{\left(x-4\right)}{6\sqrt{x^2 - 8x + 20}}$ $\frac{dT}{dx} = 0$ $\frac{1}{10} + \frac{\left(x-4\right)}{6\sqrt{x^2 - 8x + 20}} = 0$ $5(x-4) = -3\sqrt{x^2 - 8x + 20}$ $25\left(x^2 - 8x + 16\right) = 9\left(x^2 - 8x + 20\right)$ $25x^2 - 200x + 400 = 9x^2 - 72x + 180$ $16x^2 - 128x + 220 = 0$ $x = 2.5 \text{ or } 5.5$ Since $x < 4, x = 2.5 \text{ km}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	lu	2u	3u	lr	2r	T1	T2 or two of T1

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 13	14 – 19	20 – 24