Assessment Schedule - 2023
Mathematics and Statistics: Apply algebraic methods in solving problems (91261)

Evidence

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { ONE } \\ & \text { (a)(i) } \end{aligned}$	$\frac{2}{n}$	- Correct simplified expression with positive index, as given.		
(ii)	$\begin{aligned} \left(\frac{n^{3}}{16 n^{6}}\right)^{-0.5} & =\sqrt{16 n^{3}} \\ & =4 n^{\frac{3}{2}} \end{aligned}$	- Correct interpretation of negative power. OR Interprets power of 0.5 as square root. OR Obtains unsimplified equivalent fraction or numerical coefficients such as 2^{2} or $\frac{1}{0.25}$.		
(b)	$\left.\begin{array}{rl} \frac{2\left(10 x^{2}-11 x+3\right)}{x(5 x-3)} & =\frac{2(2 x-1)(5 x-3)}{x(5 x-3)} \\ & =\frac{2(2 x-1)}{x} \\ & =4-\frac{2}{x} \end{array}\right\}=4 \text { and } B=-2 \text {. }$	- Correct factorisation of numerator.	- Correct values for A and B (if not explicitly stated, line 3 is required).	
(c)	Initially $t=0$ $\begin{aligned} & 900=40+k \mathrm{e}^{0} \\ & k=860 \\ & 450=40+860 \mathrm{e}^{-0.5 t} \\ & 860 \mathrm{e}^{-0.5 t}=410 \\ & \mathrm{e}^{-0.5 t}=0.477 \end{aligned}$ Take log of both sides: $\begin{aligned} & \ln \left(\mathrm{e}^{-0.5 t}\right)=\ln 0.477 \\ & -0.5 t=\frac{\ln 0.477}{\ln \mathrm{e}} \\ & t=1.48 \text { years } \end{aligned}$	- $\mathrm{t}=0$ substituted.	- k correctly found using $t=0$.	- Correctly solved.

NCEA Level 2 Mathematics and Statistics (91261) 2023 - page 2 of 6

(d)	$\begin{aligned} & x^{2}-k(2 x+29)+32 k=0 \\ & x^{2}-2 k x+3 k=0 \\ & \text { using } b^{2}-4 a c=0 \\ & 4 k^{2}-12 k=0 \\ & k=0 \text { and } k=3 \end{aligned}$ So, $k=3$, so quadratic can be written as $y=\frac{x^{2}}{6}+16$ When $x=0, y=16$	- First step in solving simultaneous equations: substitution for x or y, or equivalent, to give an equation in one variable only OR y-intercept correc	- Setting discriminant $=0$ for relevant equation (allow minor error) OR Calculus used correctly to obtain both k and y intercept correctly	$\mathrm{T}: k$ correct. TT: both k and y intercept correct.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

NCEA Level 2 Mathematics and Statistics (91261) 2023 - page 3 of 6

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	$\begin{aligned} & 3 m+1=2^{4} \\ & 3 m=15, m=5 \end{aligned}$	- Correct solution.		
(ii)	$\begin{aligned} & \log _{x} 64=2 \\ & x^{2}=64 \\ & x= \pm 8 \end{aligned}$ As base cannot be negative, $x=8$ OR $\begin{aligned} & x^{6}=64^{3} \\ & x=\sqrt[6]{262144} \\ & x= \pm 8 \end{aligned}$ As base cannot be negative, $x=8$	- Written in an index form. OR $x=8$ obtained with no consideration of $x=-8$.	- Correct answer with justification or evidence of negative value being disregarded.	
(b)	$\begin{aligned} & \frac{5^{7 x+6}}{5^{-2 x}}=\left(5^{3}\right)^{p} \\ & 5^{7 x+6-(-2 x)}=5^{3 p} \\ & 9 x+6=3 p \\ & p=3 x+2 \end{aligned}$ OR $\begin{aligned} p & =\log _{125}\left(\frac{5^{7 x+6}}{25^{-x}}\right) \\ & =\log _{125}\left(\frac{5^{7 x+6}}{5^{-2 x}}\right) \\ & =\log _{125}\left(5^{9 x+6}\right) \\ & =\log _{5}\left(\frac{5^{9 x+6}}{3}\right) \\ & =3 x+2 \end{aligned}$	- Conversion to either $5^{3 p}$ or $5^{-2 x}$. OR $x=\frac{p-2}{3}$ OR Log expression up to line 1 , which is only one possible log approach.	- Correct answer (simplification not required)	
(c)	$\begin{aligned} 6+\log _{b}\left(b^{-3}\right)+\log _{b}\left(b^{\frac{1}{2}}\right) & =6-3 \log (b)+\frac{1}{2} \log _{b}(b) \\ & =6-3+\frac{1}{2} \\ & =3 \frac{1}{2} \end{aligned}$	- Combine logs into 1 log term, e.g. $\log _{b}(b-2.5)$.	- Rewriting both log terms bringing down the power.	- Correct value, even if the candidate goes direct to the numerical values

NCEA Level 2 Mathematics and Statistics (91261) 2023 — page 4 of 6

(d)	$4^{x}-10=3 \times 4^{x}$	Obtains $4^{2 x}$	• Solved for ' u '.	• Correct value.
$4^{2 x}-3 \times 4^{x}-10=0$	OR			
Let $u=4^{x}$	16^{x}			
$u^{2}-3 u-10=0$	OR			
$(u+2)(u-5)=0$	$\left.\left(4^{x}\right)^{2}\right)$			
$4^{x}=-2$ or $4^{x}=5$	$3 G 4^{x}$			
Negative value not valid so:				
$\log 4^{x}=\log 5$				
$x=\frac{\log 5}{\log 4}$				
$x=1.16$				
Accept $\log _{4}(5)$				

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { THREE } \\ & (\mathrm{a})(\mathrm{i}) \end{aligned}$	$\begin{aligned} & (5 x-2)(x+3)=0 \\ & x=\frac{2}{5} \text { or }-3 \end{aligned}$	- Both values correct.		
(ii)	$\frac{(3 x-4)(x-2)}{(3 x+4)(3 x-4)}=\frac{x-2}{3 x+4}$	- Correct expression.		
(b)	Does not touch the x-axis so: $\begin{aligned} & b^{2}-4 a c<0 \\ & 8^{2}-4(2) p<0 \\ & 64-8 p<0 \\ & \text { Accept } p \geq 8 \end{aligned}$ Could also use completing the square.	- Set up inequality (line $3)$. - OR - $p=8$ - OR - $p<8$.	- Correct answer.	
(c)	$\begin{aligned} & \frac{x^{2}+2 x+k}{(x+5)(x+2)}=\frac{x-3}{x+2} \\ & x^{2}+2 x+k=(x-3)(x+5) \\ & x^{2}+2 x+k=x^{2}+2 x-15 \end{aligned}$ Therefore, $k=-15$ Or equivalent approach.	- Makes progress towards solution by eliminating denominators, or equivalent.	- Value found.	
(d)	Equation $\begin{aligned} & y=a(x+1.25)(x-1.25) \\ & y=a\left(x^{2}-1.5625\right) \\ & x=0, y=-3 \\ & -3=-1.5625 a \\ & a=1.92 \\ & y=1.92(x+1.25)(x-1.25) \\ & x=1.1, y=-0.678 \end{aligned}$ No, boat will not float. OR Using vertex form: $\begin{aligned} & y=a(x-h)^{2}+k \\ & y=a x^{2} \\ & 3=a(1.25)^{2} \\ & a=1.92 \\ & y=1.92(1.1)^{2} \\ & y=2.3232 \end{aligned}$ The edge of the canal is only 0.6768 m below the water surface, so the boat won't float. Accept other correct variations of these approaches.	- General equation, fitting the context, formed in any correct format.	- Coefficient of x^{2} found..	- Depth of canal at appropriate width, or width of canal at 1 m depth, calculated. AND Statement that boat will not float or similar comment.

NCEA Level 2 Mathematics and Statistics (91261) 2023 — page 6 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

