Assessment Schedule – 2023

Mathematics and Statistics: Apply calculus methods in solving problems (91262) Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	f'(x) = 8x - 12 4 = 8x - 12 x = 2 $f(2) = 4(2)^{2} - 12(2)$ f(2) = -8 The point on the curve $f(x)$ that has a gradient equal to 4 is (2,-8).	• Derivative found AND <i>x</i> -coord found.		
(b)	$f'(x) = 4x^{3} - 6x^{2} - 4x$ $f(x) = \frac{4x^{4}}{4} - \frac{6x^{3}}{3} - \frac{4x^{2}}{2} + C$ $f(x) = x^{4} - 2x^{3} - 2x^{2} + C$ at (2,-5) $-5 = (2)^{4} - 2(2)^{3} - 2(2)^{2} + C$ $C = 3$ $f(x) = x^{4} - 2x^{3} - 2x^{2} + 3$	• Correct anti- derivative with + C.	• Correct $f(x)$ including C = 3.	
(c)	$f'(x) = \frac{4x^3}{4} - \frac{6x^2}{3} - 24x$ $f'(x) = x^3 - 2x^2 - 24x$ f'(x) = x(x-6)(x+4) Turning points when $x = 0, 6, -4$ $f''(x) = 3x^2 - 4x - 24$ $f''(0) = 3(0)^2 - 4(0) - 24$ f''(0) = -24 (negative, :. local max) f''(6) = 60 (positive, :. local min) f''(-4) = 40 (positive, :. local min) Function is increasing $-4 < x < 0$ and $6 < x$.	• Derivative found. AND Set = 0 or implied.	• <i>x</i> -coordinates found.	 Justification for regions where the function is increasing. Justification includes: <i>f</i>", checking gradients or graph of function or similar.
(d)	$A = x \times 2r$ $p = 2x + 2\pi r$ $400 = 2x + 2\pi r$ $x = 200 - \pi r$ $A = (200 - \pi r) \times 2r$ $A = 400r - 2\pi r^{2}$ $A' = 400 - 4\pi r$ $0 = 400 - 4\pi r$ $r = \frac{100}{\pi} = 31.83 (2 \text{ d.p.})$ $x = 200 - \pi \left(\frac{100}{\pi}\right)$ x = 100 m $A'' = -4\pi \text{ (negative, therefore local max)}$ (Maximum area is 6366.20 m ²)	• Relationship formed AND differentiated.	• Differentiated AND values of <i>r</i> and <i>x</i> found.	• Justification of max confirmed.

NCEA Level 2 Mathematics and Statistics (91262) 2023 - page 2 of 7

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1u	2u	3u	lr	2r	lt	2t

NCEA Level 2 Mathematics and Statistics (91262) 2023 - page 3 of 7

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	Green line is $f'(x)$ (answer to this question). Red line is the original function $f(x)$.	 TWO of 3 required: shape orientation x-intercepts. 	 ALL three required: shape orientation <i>x</i>-intercepts. 	
(b)	$f'(x) = 9x^{2} - 1$ Gradient of line $y = 8x + 10$ is 8. $8 = 9x^{2} - 1$ $x = \pm 1$ f(I) = 6 f(-I) = 2 Substituting in (1,6) y - 6 = 8(x - 1) y = 8x - 2 wrong Substituting in (-1,2) y - 2 = 8(x - 1) y = 8x + 10 correct	• Derivative found AND set to 8.	• Uses $(-1,2)$ to form tangent equation y = 8x + 10.	

(c)(i)	$a = -2.5 \text{ m s}^{-2}$ $v = -2.5t + C_1$ At $t = 0, v = 27.78$ v = -2.5t + 27.78 For $v = 0$ 0 = -2.5t + 27.78 t = 11.11 s	• General expression for <i>v</i> found.	• Finds general expression for <i>s</i> and solves to find the time it takes the car to reach a complete stop. t = 11.112 s is found in (c)(i).	Finds value of <i>C</i> ₂ AND correctly shows distance car travelled before coming to complete stop.
(ii)	$s = -\frac{2.5t^2}{2} + 27.78t + C_2$ At $t = 0, s = 0$ $s = -\frac{2.5t^2}{2} + 27.78t$ For $v = 0, t = 11.11$ $s = -\frac{2.5(11.11)^2}{2} + 27.78(11.11)$ s = 154.35 m The car travels 154.35 m between the start of the deceleration to the point where the car is completely stopped			

(iii)	$a = 2.1 \text{ m s}^{-2}$ $v = -2.1t + C$ At $t = 0, v = k$ $v = -2.5t + k$ For $v = 0$ $0 = -2.1t + k \text{ to stop}$ $t = \frac{k}{2.1} \text{ or } k = 2.1t$ $s = -\frac{-2.1t^2}{2} + kt + C_2$ At $k = 22.1t, v = 0. C_2 = 0$ $s = -105t^2 + 2.1t^2$ So $t = \pm 12.1$ $k = 25.43 \text{ m s}^{-1}$ Alternatively $a = 2.1 \text{ ms}^{-1}$ $v = -2.1t + C_1$ At $t = 0, v = k$ $v = -2.1t + k$ $t = \frac{k}{2.1}$ $s = -\frac{2.1t^2}{2} + kt + C_2$ At $t = 0, s = 0 \therefore C_2 = 0$ $s = -\frac{2.1t^2}{2} + kt + C_2$ At $t = 0, s = 0 \therefore C_2 = 0$ $s = -\frac{2.1t^2}{2} + kt$ For $v = 0, t = \frac{k}{2.1}$ $s = 154.35 \text{ m}$ $154.35 = -\frac{2.1\left(\frac{k}{2.1}\right)^2}{2} + k\left(\frac{k}{2.1}\right)$	General expression for found.	• Expression for <i>t</i> found. AND General expression for <i>s</i> .	Value for <i>k</i> (unknown initial velocity) found.
	$154.35 = -\frac{(2.1)}{2} + k \left(\frac{\kappa}{2.1}\right)$ k = 25.5 m s ⁻¹ The car with older brakes needs to be travelling at an initial velocity of 91.55 km/hr in order to stop in the same distance.			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1u	2u	3u	1r	2r	1t	2t

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	$y' = 6x^{2} - 18x + 12$ y'(1) = 6(1) ² - 18(1) + 12 y' = 0	• Derivative found AND correct gradient.		
(ii)	y' = 6(x-1)(x-2) 0 = 6(x-1)(x-2) x = 1 or x = 2 y(2) - 7 Other coordinate with gradient = 0 is (2,7)		• Correct gradient equation equated to 0 AND coordinates found.	
(b)(i)	$F' = 15t^{2} - 1680t + 42180$ $F'(5) = 15(5)^{2} - 1680(5) + 42180$ F'(5) = 34155	• Derivative found AND correct rate found.		
(ii)	$F' = 15t^{2} - 1680t + 42180$ $0 = t^{2} - 112t + 2812$ t = 74 or 38 $F(38) = 664 \ 240 \ (\text{local max})$ $F(74) = 547 \ 600 \ (\text{local min})$	• Derivative set to 0 or implied AND solved.	• Maximum found.	
(iii)	Turning points at $t = 38$ days and t = 74 days. Positive cubic function – increasing / decreasing / increasing. Only losing followers between 38 and 74 days 74–38 = 36 days F'' = 1530t - 1680 $F''(38) = -540 \rightarrow \text{negative}$ \therefore local maximum $F''(74) = 540 \rightarrow \text{positive}$ \therefore local minimum			• Days found, justifying the decreasing region.

(c)	$f'(x) = 3x^{2} - 2px + 21$ f'(4) = 69 - 8p $f(x) = x^{3} - px^{2} + 21x - 7$ $f(4) = (4)^{3} - p(4)^{2} + 21(4) - 7$ f(4) = 141 - 16p Equation of the tangent: y = mx - 7 y = (69 - 8p)x - 7 $141 - 16p = (69 - 8p) \times 4 - 7$ 141 - 16p = 269 - 32p p = 8 Alternatively $f'(x) = 3x^{2} - 2px + 21$ f'(4) = 69 - 8p $f(4) = (4)^{3} - p(4)^{2} + 21(4) - 7$ f(4) = 141 - 16p Two points (4,141 - 16p) and (0,-7) $m = \frac{((141 - 16p)7)}{4 - 0}$ $m = \frac{148 - 16p}{4}$ f'(4) must equal m $\frac{148 - 16p}{4} = 69 - 8p$ 148 - 16p = 276 - 32p p = 8	• Derivative found and expression for the gradient of tangent found in terms of <i>p</i> .	• Formed tangent equation. OR Both expressions for the gradient of tangent found in terms of <i>p</i> .	• Value for <i>p</i> found.
-----	--	---	--	-----------------------------

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	lu	2u	3u	lr	2r	lt	2t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
0 – 7	8 – 13	14 – 19	20 – 24	