Assessment Schedule - 2023
Mathematics and Statistics: Apply probability methods in solving problems (91267) Evidence

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { ONE } \\ & \text { (a)(i) } \end{aligned}$	$\mathrm{P}($ drops on 1st and wins 2nd game) $=0.15 \times \frac{1}{9}=0.0167$ Allow CAO.	- Probability correct.		
(ii)	$\begin{aligned} & \mathrm{P}(\text { wins 3rd game })= \\ & \mathrm{P}(\mathrm{D}, \mathrm{D}, \mathrm{~W}) 0.15 \times 0.15 \times \frac{1}{8}+ \\ & \mathrm{P}(\mathrm{D}, \mathrm{~L}, \mathrm{~W}) 0.15 \times 0.7389 \times \frac{1}{8}+ \\ & \mathrm{P}(\mathrm{~L}, \mathrm{D}, \mathrm{~W})=0.75 \times 0.15 \times \frac{1}{8} \\ & =0.00281+0.01385+0.014=0.0307=\frac{59}{120} \end{aligned}$ Accept any rounding.	- Consistent probability without changing P (winning) to $\frac{1}{8}$. OR One correct partial probability.	- Correct probability, i.e. adding all three possibilities.	
(iii)	$\begin{aligned} & \mathrm{P}(\text { wins in } 4 \text { attempts })= \\ & \mathrm{P}(\mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{~W})+\mathrm{P}(\mathrm{D}, \mathrm{D}, \mathrm{~L}, \mathrm{~W})+\mathrm{P}(\mathrm{D}, \mathrm{~L}, \mathrm{D}, \mathrm{~W})+ \\ & \mathrm{P}(\mathrm{~L}, \mathrm{D}, \mathrm{D}, \mathrm{~W})= \\ & 0.15 \times 0.15 \times 0.15 \times \frac{1}{7}+0.15 \times 0.15 \times 0.725 \times \frac{1}{7}+ \\ & 0.15 \times 0.739 \times 0.15 \times \frac{1}{7}+\frac{3}{4} \times 0.15 \times 0.15 \times \frac{1}{7} \\ & =0.0004821+0.00233+0.002375+0.00241 \\ & =0.007598 \\ & \mathrm{P}(\text { wins in } 3 \text { attempts })=0.307 \\ & (\text { using answer from part }(\mathrm{ii})) \\ & \mathrm{P}(\text { wins in } 2 \text { attempts })= \\ & 0.15 \times \frac{1}{9}+0.75 \times \frac{1}{9}=0.10 \\ & \mathrm{P}(\text { wins in } 1 \text { attempt })=0.10 \\ & (\mathrm{P}(\text { wins in max of } 4 \text { attempts })= \\ & \mathrm{P}(\text { win in } 1)+\mathrm{P}(\text { win in } 2)+\mathrm{P}(\text { win in } 3) \\ & +\mathrm{P}(\text { win in } 4) \\ & =0.10+0.10+0.0307+0.0076=0.2383 \end{aligned}$		- P (wins in exactly four attempts) found (0.0076).	T1: Correct probability.
(b)(i)	$\begin{aligned} & \mathrm{P}(\text { winning claw game })= \\ & 0.7 \times 0.10+0.3 \times 0.25=0.145 \\ & =\frac{29}{200}=14.5 \% \end{aligned}$	- Correct probability.		

(ii)	$\mathrm{P}($ treat $)=$ $\begin{aligned} & 0.7 \times 0.10 \times 6 x+0.7 \times 0.9 \times 3 x \\ & +0.3 \times 0.25 \times 2 x+0.3 \times 0.75 \times x=0.40 \\ & 2.685 x=0.40 \\ & x=0.1489=\frac{80}{537} \end{aligned}$ $\mathrm{P}($ friends and win claw and treat) $=0.7 \times 0.1 \times 0.8934=0.063$	- CAO for either x or probability.	- Correct equation set up. OR $x, 2 x, x$ correctly shown on tree	T1: Correct x value found (prob of treat if lose claw by herself) with valid working. OR Final probability evaluated, with one error in algebraic set-up. T2: Correct probability found with valid working

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	$\mathrm{T1}$	T 2 or $2 \mathrm{T1}$

Figure 1: Probability tree for Question One (a)

Figure 1: Probability tree for Question One (b)

NCEA Level 2 Mathematics and Statistics (91267) 2023 - page 4 of 7

\begin{tabular}{|c|c|c|c|}
\hline (b)(i)

(ii) \& \begin{tabular}{l}
$$
\begin{aligned}
& P(\text { streaming services in 2016 })=\frac{102}{249}=0.4096 \\
& P(\text { streaming services in } 2022)=\frac{473}{706}=0.6700 \\
& 0.6700-0.4096=0.2604
\end{aligned}
$$ \\
The percentage of youth watching streaming services in 2022 is 26% higher than in 2016. \\
(Do NOT accept use of relative risk of 1.63, as it is 63% more likely NOT 63% higher) \\
2022 \\
$P($ streaming services in youth $)=\frac{473}{706}=0.67$ \\
Expected value $=0.67 \times 400=267.99$, so expect 268. \\
2021 \\
$\mathrm{P}($ streaming services in youth $)=\frac{191}{251}=0.761$ \\
Expected value $=0.761 \times 400=304.4$, so expect 304. \\
2020 \\
$\mathrm{P}($ streaming services in youth $)=\frac{181}{262}=0.69$ \\
Expected value $0.69 \times 400=276.3$, so expect 276. \\
Candidate could, for example, justify they expect the drop from 2021 to 2022 to continue, so estimate probability to be as low as 0.58 , or for it to return to 2021 at nearly 0.80 . \\
Accept an expected number between 230 and 320 with valid working or justification.

 \&

- Correct difference in percentages found. \\
- One expected value found from the table for any year. OR At least TWO probabilities calculated.
\end{tabular} \& - Expected value for 2023 estimated with working or justification based on at least one probability from the table. (Must be whole number.) \\

\hline
\end{tabular}

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	T1	T2

NCEA Level 2 Mathematics and Statistics (91267) 2023 - page 6 of 7

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i) (ii)	Normal distribution $\mu=113 \sigma=35$ $\mathrm{P}(X<92)=\mathrm{P}(Z<-0.6)=0.2743$ (0.2742 from tables) Allow CAO $\begin{aligned} & \mathrm{P}(120<X<180)=\mathrm{P}(0.2<Z<1.914) \\ & =0.3929(0.3928 \text { from tables }) \end{aligned}$ Allow CAO	- Probability correct. - Probability correct.		
(b)(i) (ii)	Inverse normal $\begin{aligned} & \mathrm{P}\left(\mathrm{x}_{1}<X<\mathrm{x}_{2}\right)=0.5 \\ & \mathrm{P}\left(0<\mathrm{Z}<\mathrm{Z}_{2}\right)=0.25 \\ & \mathrm{Z}_{2}=0.674 \quad \mathrm{Z}_{1}=-0.674 \\ & 94 \pm 0.674 \times 30 \end{aligned}$ Or GC with area: centre $=0.50$ $\begin{aligned} & \mathrm{x}_{1}=73.8 \\ & \mathrm{x}_{2}=114.2 \\ & \mathrm{IQR}=114.2-73.8=40.4 \end{aligned}$ Middle 50% of youth spend between 73.8 and 114.2 minutes watching online videos daily. Streaming services: $\mathrm{P}(X>120)=\mathrm{P}(Z>0.2)$ Expected number $=50 \times 0.4207=$ $21.035=21$ Online videos: $\mathrm{P}(X<120)=\mathrm{P}(Z>0.867)=0.1931$ Expected number $=50 \times 0.1931=$ $9.655=10$ Then difference will be $21-10=11$. Would expect 11 (or 12) more youth respondents to have spent over 120 minutes watching streaming services than watching online videos.	- LQ or UQ found. OR CAO. - One probability found (i.e. either 0.4207 or 0.1931) OR One relevant expected value found. OR CAO	- Correct IQR. OR Both quartiles found and interpreted in context. Some evidence of working or diagram must be shown. - Difference in two expected values found with valid evidence. - Must be a whole number.	

NCEA Level 2 Mathematics and Statistics (91267) 2023 - page 7 of 7

(iii)	Normal distribution not appropriate because: - $\mathrm{P}(X<0) \neq 0$ (can't have negative minutes, so distribution needs to be truncated). - There would be some youth who do not spend any time watching videos or on streaming services, which would give a cluster on left tail which would not fit a unimodal normal distribution shape with peak at the centre. - The shape is unlikely to be symmetrical or bell-shaped, as some students could spend a very long time on these devices, making it right-skewed, which is not normally distributed. - Programmes on streaming services are often in multiples of 30 or 60 minutes, so may not be continuous, but have clusters at common episode / movie length times.	- One valid reason given for one context, which must link to a normal distribution model.	- Two valid reasons given which must link to a normal distribution model.	
(c)(i)	A large number of youth not watching any TV (0 minutes) would have brought down the mean and median significantly, and caused a bimodal or skewed distribution.		- Valid discussion in part (i). AND	T1: Correct standard deviation found with valid working.
(ii)	$\begin{aligned} & \mathrm{P}(\mathrm{X}>150)=0.12 \\ & \mathrm{P}(\mathrm{Z}>1.175)=0.12 \\ & Z=\frac{X-\mu}{\sigma} \\ & 1.175=\frac{150-114}{\sigma} \\ & \sigma=30.6 \text { minutes } \end{aligned}$	- CAO for standard deviation. OR Correct z-score.	Correct zscore.	T2: Standard deviation found. AND Discussion of how normal distribution shape AND mean would be affected by 0 -values.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1 u	2 u	3 u	1 r	2 r	T1	T2

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-7$	$8-13$	$14-19$	$20-24$

