Assessment Schedule - 2023

Calculus: Apply differentiation methods in solving problems (91578)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}(3 x-2)^{-\frac{1}{2}} \times 3=\frac{3}{2}(3 x-2)^{-\frac{1}{2}}$	- Correct derivative.		
(b)	$\begin{aligned} f^{\prime}(t) & =t^{2}\left(2 \mathrm{e}^{2 t}\right)+\mathrm{e}^{2 t}(2 t) \\ & =2 t^{2} \mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t} \\ & =2 t \mathrm{e}^{2 t}(t+1) \\ f^{\prime}(1.5) & =3 \mathrm{e}^{3}(2.5) \\ & =7.5 \mathrm{e}^{3}=150.64 \end{aligned}$	- Correct derivative. AND Correct rate of change.		
(c)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =-6(x+1)^{-4} \\ & =\frac{-6}{(x+1)^{4}} \end{aligned}$ When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{3}{8}$ or -0.375 $\begin{aligned} & \frac{-6}{(x+1)^{4}}=-\frac{3}{8} \\ & 3(x+1)^{4}=48 \\ & (x+1)^{4}=16 \\ & x+1= \pm 2 \\ & x=1 \text { or }-3 \end{aligned}$ \therefore Second tangent touches the curve when $x=-3$	- Correct derivative for $\frac{\mathrm{d} y}{\mathrm{~d} x}$. AND Correct gradient of $\frac{3}{8}$ found.	- Finds the correct value of x for the second tangent, with evidence of derivative.	

(d)	$\begin{aligned} & x=4 \cos \theta \text { and } y=4 \sin \theta \\ & \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=-4 \sin \theta \text { and } \frac{\mathrm{d} y}{\mathrm{~d} \theta}=4 \cos \theta \\ & \frac{d y}{d x}=\frac{4 \cos \theta}{-4 \sin \theta}=-\frac{x}{y}=-\frac{p}{q} \end{aligned}$ OR Equation of circle: $x^{2}+y^{2}=16$ Differentiating implicitly gives $\begin{aligned} & 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{x}{y} \end{aligned}$ At (p, q), the gradient is $-\frac{p}{q}$ Equation of tangent: $\begin{aligned} & y-q=-\frac{p}{q}(x-p) \\ & q y-q^{2}=-p x+p^{2} \\ & p x+q y=p^{2}+q^{2} \text { as required. } \end{aligned}$	- Correct derivative for $\frac{\mathrm{d} y}{\mathrm{~d} x}$. - $\frac{\mathrm{d} y}{\mathrm{~d} x}$ can be expressed in terms of θ or x, y or $p, q)$.	- Proof completed, with correct .

(e)

Area of triangle $=\frac{1}{2} x y$

- Correct derivative.
- Correct
derivative
AND
$x=m$ found.

T1
Maximum area, $A=\frac{1}{2} m^{4}$ found with correct $\frac{\mathrm{d} A}{\mathrm{~d} x}$.
OR
Correct solution but with one minor error.

T2

Correct solution with correct $\frac{\mathrm{d} A}{\mathrm{~d} x}$ showing the calculation of the correct proportion of total shaded area..
$\frac{\mathrm{d} A}{\mathrm{~d} x}=2 x^{3}-6 m x^{2}+4 m^{2} x$

$$
=2 x\left(x^{2}-3 m x+2 m^{2}\right)
$$

$$
=2 x(x-2 m)(x-m)
$$

$\frac{\mathrm{d} A}{\mathrm{~d} x}=0 \Rightarrow 2 x(x-2 m)(x-m)=0$
$x=0$ or $x=2 m$ or $x=m$
Since $0<x<2 m$
the area is a maximum when $x=m$
Maximum area of triangle:
$A(m)=\frac{1}{2} m^{2}(m-2 m)^{2}$

$$
=\frac{1}{2} m^{4}
$$

This is $\frac{3}{8}$ of the total shaded area since
$\frac{3}{8} \times \frac{4 m^{3}}{3}=\frac{1}{2} m^{4}$

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\begin{aligned} f^{\prime}(x) & =\frac{(\cos x)(2 x)-\left(x^{2}\right)(-\sin x)}{\cos ^{2} x} \\ & =\frac{2 x \cos x+x^{2} \sin x}{\cos ^{2} x} \\ & =\frac{x(2 \cos x+x \sin x)}{\cos ^{2} x} \end{aligned}$	- Correct derivative.		
(b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \operatorname{cosec}^{2}(2 x) \\ & \text { When } x=\frac{\pi}{12} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-2}{\sin ^{2}\left(\frac{\pi}{6}\right)} \\ & \quad=-8 \end{aligned}$	- Correct derivative. AND Correct gradient of -8 found.		
(c)	$\begin{aligned} & f^{\prime}(x)=\frac{\left(x^{2}+2 x\right) \mathrm{e}^{x}-\mathrm{e}^{x}(2 x+2)}{\left(x^{2}+2 x\right)^{2}} \\ &=\frac{e^{x}\left(\left(x^{2}+2 x\right)-(2 x+2)\right)}{\left(x^{2}+2 x\right)^{2}} \\ &=\frac{\mathrm{e}^{x}\left(x^{2}-2\right)}{\left(x^{2}+2 x\right)^{2}} \\ & f^{\prime}(x)=0 \Rightarrow \mathrm{e}^{x}\left(x^{2}-2\right)=0 \\ & \mathrm{e}^{x} \neq 0 \\ & x^{2}-2=0 \\ & x= \pm \sqrt{2} \text { or } x= \pm 1.41 \end{aligned}$	- Correct derivative.	- Correct both values of x found, with evidence of derivative.	
(d)	$\begin{aligned} & f^{\prime}(x)=3 x^{2} \cdot \frac{1}{x}+\ln x \cdot(6 x) \\ &=3 x+6 x \ln x \\ & f^{\prime \prime}(x)=3+6 x \cdot \frac{1}{x}+\ln x(6) \\ &=9+6 \ln x \\ & f^{\prime \prime}(x)=0 \Rightarrow 9+6 \ln x=0 \\ & \ln x=-1.5 \\ & x=\mathrm{e}^{-1.5} \text { or } x=0.223 \end{aligned}$	- Correct $f^{\prime}(x)$.	- Correct $f^{\prime}(x)$. AND Correct $f^{\prime \prime}(x)$. AND Correct x-value.	

(e)	Let $x=$ horizontal distance between the helicopter and the car. Let $y=$ direct distance between the helicopter and the car. Given: $\frac{\mathrm{d} \theta}{\mathrm{d} t}=0.002 \mathrm{rads}-1$ $\tan \theta=\frac{400}{x}$ $x=400 \cot \theta$ $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-400 \operatorname{cosec}^{2} \theta$ $=\frac{-400}{\sin ^{2} \theta}$ $\begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t}= & \frac{\mathrm{d} x}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{~d} t} \\ & =\frac{-400}{\sin ^{2} \theta} \times 0.002 \\ & =\frac{-0.8}{\sin ^{2} \theta} \end{aligned}$ When $y=2500, \sin \theta=\frac{400}{2500}$ $\theta=0.1607 \mathrm{rad}$ $\begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t} & =\frac{-0.8}{\sin ^{2}(0.1607} \\ & =31.25 \end{aligned}$ When the helicopter is travelling at $72 \mathrm{~m} \mathrm{~s}^{-1}$, The speed of the car $=72-31.25$ $\begin{aligned} & =40.75 \mathrm{~m} \mathrm{~s}^{-1} \\ & (=146.7 \mathrm{~km} / \mathrm{hr}) \end{aligned}$	- Finds $\frac{d x}{d \theta}$	- Finds an expression for $\frac{\mathrm{d} x}{\mathrm{~d} t}$.	T1 Finds the value for $\frac{\mathrm{d} x}{\mathrm{~d} t}=-31.25$ With correct derivatives. OR Finds correct solution but with one minor error. T2 Finds $\frac{\mathrm{d} x}{\mathrm{~d} t}=-31.25$ with correct derivatives. AND The speed of the $\mathrm{car}=40.76 \mathrm{~m} \mathrm{~s}^{-1}$.

NØ	N1	N2	A3	$\mathbf{A 4}$	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1 u	2 u	3 u	1 r	2 r	1 t	2 t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-4 x^{3}}{x^{2}-x^{4}+1}$	- Correct derivative.		
$\begin{gathered} \text { (b)(i) } \\ \text { (ii) } \\ \text { (iii) } \end{gathered}$	$\begin{aligned} & x=8 \\ & x=-4 \end{aligned}$ The limit does not exist.	- 2 out of 3 correct responses.		
(c)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=\sqrt{2} \pi \cos \left(\frac{\pi t}{5}\right) \\ & \frac{\mathrm{d} y}{\mathrm{~d} t}=\sqrt{2} \pi \sin \left(\frac{\pi t}{5}\right) \Rightarrow \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\tan \left(\frac{\pi t}{5}\right) \end{aligned}$ When $t=6.25 \Rightarrow$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\tan (1.25 \pi)=1$ Normal gradient: $m=-1$	- Correct expression for $\frac{\mathrm{d} x}{\mathrm{~d} t}$ AND $\frac{\mathrm{d} y}{\mathrm{~d} t}$.	- Gradient of the normal found.	
(d)	$\begin{aligned} & f(x)=x^{-1}-2 x^{-3} \\ & f^{\prime}(x)=-x^{-2}+6 x^{-4}=0 \\ & \frac{6}{x^{4}}=\frac{1}{x^{2}} \\ & 6 x^{2}-x^{4}=0 \\ & x^{2}\left(6-x^{2}\right)=0 \\ & x \neq 0 \text { so } x= \pm \sqrt{6} \\ & f^{\prime \prime}(x)=2 x^{-3}-24 x^{-5} \\ & f^{\prime \prime}(\sqrt{6})=-0.136<0 \text { i.e. maximum } \\ & f^{\prime \prime}(-\sqrt{6})=0.136>0 \text { i.e. minimum } \\ & \text { Maximum at }\left(\sqrt{6}, \frac{\sqrt{6}}{9}\right)=(2.45,0.2722) \\ & \text { Minimum at }\left(-\sqrt{6}, \frac{-\sqrt{6}}{9}\right)=(-2.45,-0.2722) \end{aligned}$	- Correct values of x found, with evidence of derivative.	- Co-ordinates and nature of the two turning points found and distinguished, with evidence of a calculus method.	

(d)	$\begin{aligned} & f(x)=x^{-1}-2 x^{-3} \\ & f^{\prime}(x)=-x^{-2}+6 x^{-4} \\ & \quad=\frac{-1}{x^{2}}+\frac{6}{x^{4}} \\ & f^{\prime}(x)=0 \Rightarrow \frac{-1}{x^{2}}+\frac{6}{x^{4}}=0 \\ & \left.x^{4}-6 x^{2}\right)=0 \\ & x^{2}\left(x^{2}-6\right)=0 \\ & x=0 \text { not possible } \\ & x^{2}-6=0 \\ & x= \pm \sqrt{6} \text { or } x= \pm 2.45 \end{aligned}$ Second derivative test : $\begin{aligned} f^{\prime \prime}(x) & =2 x^{-3}-24 x^{-5} \\ & =\frac{2}{x^{3}}-\frac{24}{x^{5}} \\ f^{\prime \prime}(\sqrt{6}) & =-0.136=-\frac{\sqrt{6}}{18} \end{aligned}$ Since $f^{\prime \prime}(\sqrt{6})<0, x=\sqrt{6}$ is a local maximum. $f^{\prime \prime}(\sqrt{6})=-0.136=-\frac{\sqrt{6}}{18}$ Since $f^{\prime \prime}(\sqrt{6})>0, x=-\sqrt{6}$ is a local minimum. Maximum turning point when $x=\sqrt{6}$. Minimum turning point when $x=-\sqrt{6}$.	- Correct derivative. AND Correct two values of x found $(\operatorname{not} x=$ $0)$.	- x-coordinates of both stationary points found. AND The nature of the two turning points found with a correct first or second derivative test. Not required: $\begin{aligned} f(\sqrt{6}) & =\frac{\sqrt{6}}{9} \\ & =0.272 \\ f(-\sqrt{6}) & =\frac{\sqrt{6}}{9} \\ & =-0.272 \end{aligned}$	

(e)		- Correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.	- Correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. AND Evidence of progress with substitution into the differential equation Reaches either stage \#(1) OR stage \#(2).	T1 - Reaches both stage \#(2) AND stage \#(3) with correct derivatives. OR Correct solution but with one minor error. T2 - Correct proof with correct derivatives.

NØ	N1	$\mathbf{N 2}$	$\mathbf{A 3}$	$\mathbf{A 4}$	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1 u	2 u	3 u	1 r	2 r	1 t	

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-7$	$8-12$	$13-18$	$19-24$

