Assessment Schedule – 2023

Calculus: Apply differentiation methods in solving problems (91578)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$\frac{dy}{dx} = \frac{1}{2}(3x-2)^{-\frac{1}{2}} \times 3 = \frac{3}{2}(3x-2)^{-\frac{1}{2}}$	• Correct derivative.		
(b)	$f'(t) = t^{2} (2e^{2t}) + e^{2t} (2t)$ = $2t^{2}e^{2t} + 2te^{2t}$ = $2te^{2t} (t+1)$ $f'(1.5) = 3e^{3} (2.5)$ = $7.5e^{3} = 150.64$	• Correct derivative. AND Correct rate of change.		
(c)	$\frac{dy}{dx} = -6(x+1)^{-4}$ $= \frac{-6}{(x+1)^4}$ When $x = 1$, $\frac{dy}{dx} = -\frac{3}{8}$ or -0.375 $\frac{-6}{(x+1)^4} = -\frac{3}{8}$ $3(x+1)^4 = 48$ $(x+1)^4 = 16$ $x+1=\pm 2$ $x = 1$ or -3 \therefore Second tangent touches the curve when $x = -3$	• Correct derivative for $\frac{dy}{dx}$. AND Correct gradient of $\frac{3}{8}$ found.	• Finds the correct value of <i>x</i> for the second tangent, with evidence of derivative.	

(d)	$x = 4\cos\theta \text{ and } y = 4\sin\theta$ $\frac{dx}{d\theta} = -4\sin\theta \text{ and } \frac{dy}{d\theta} = 4\cos\theta$ $\frac{dy}{dx} = \frac{4\cos\theta}{-4\sin\theta} = -\frac{x}{y} = -\frac{p}{q}$ OR Equation of circle: $x^2 + y^2 = 16$ Differentiating implicitly gives $2x + 2y\frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{x}{y}$ At (p,q) , the gradient is $-\frac{p}{q}$ Equation of tangent: $y - q = -\frac{p}{q}(x - p)$ $qy - q^2 = -px + p^2$ $px + qy = p^2 + q^2 \text{ as required.}$	 Correct derivative for dy/dx. dy/dx can be expressed in terms of θ or x, y or p,q). 	• Proof completed, with correct .	
-----	---	--	---	--

(e)	Area of triangle = $\frac{1}{2}xy$ $A = \frac{1}{2}x(x(x-2m)^2)$ $= \frac{1}{2}x^2(x-2m)^2$ $\frac{dA}{dt} = \frac{1}{2}x^2(2(x-2m)) + (x-2m)^2$	Correct derivative.	 Correct derivative. AND x = m found. 	T1 Maximum area, $A = \frac{1}{2}m^4$ found with correct $\frac{dA}{dx}$. OR
	dx = 2 = $x^{2}(x-2m) + x(x-2m)^{2}$ = $x(x-2m)(x+(x-2m))$ = $x(x-2m)(2x-2m)$ = $2x(x-2m)(x-m)$			T2 Correct solution
	OR $A = \frac{1}{2}x^{2}(x-2m)^{2}$ $= \frac{1}{2}x^{4} - 2mx^{3} + 2m^{2}x^{2}$ $\frac{dA}{dt} = 2x^{3} - 6mx^{2} + 4m^{2}x$			with correct $\frac{dA}{dx}$ showing the calculation of the correct proportion of total shaded area
	$\frac{dx}{dx} = 2x \left(x^2 - 3mx + 2m^2\right)$ $= 2x(x - 2m)(x - m)$ $\frac{dA}{dx} = 0 \Longrightarrow 2x(x - 2m)(x - m) = 0$			
	x = 0 or $x = 2m$ or $x = m$			
	Since $0 < x < 2m$ the area is a maximum when $x = m$			
	Maximum area of triangle:			
	$A(m) = \frac{1}{2}m^{2}(m-2m)^{2}$ $= \frac{1}{2}m^{4}$			
	This is $\frac{3}{8}$ of the total shaded area since			
	$\frac{3}{8} \times \frac{4m^3}{3} = \frac{1}{2}m^4$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	lt	2t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$f'(x) = \frac{(\cos x)(2x) - (x^2)(-\sin x)}{\cos^2 x}$ $= \frac{2x\cos x + x^2\sin x}{\cos^2 x}$ $= \frac{x(2\cos x + x\sin x)}{\cos^2 x}$	• Correct derivative.		
(b)	$\frac{dy}{dx} = -2 \operatorname{cosec}^{2}(2x)$ When $x = \frac{\pi}{12}$ $\frac{dy}{dx} = \frac{-2}{\sin^{2}\left(\frac{\pi}{6}\right)}$ $= -8$	 Correct derivative. AND Correct gradient of -8 found. 		
(c)	$f'(x) = \frac{(x^2 + 2x)e^x - e^x(2x + 2)}{(x^2 + 2x)^2}$ $= \frac{e^x ((x^2 + 2x) - (2x + 2))}{(x^2 + 2x)^2}$ $= \frac{e^x (x^2 - 2)}{(x^2 + 2x)^2}$ $f'(x) = 0 \Longrightarrow e^x (x^2 - 2) = 0$ $e^x \neq 0$ $x^2 - 2 = 0$ $x = \pm \sqrt{2} \text{ or } x = \pm 1.41$	• Correct derivative.	• Correct both values of <i>x</i> found, with evidence of derivative.	
(d)	$f'(x) = 3x^{2} \cdot \frac{1}{x} + \ln x \cdot (6x)$ = 3x + 6x ln x $f''(x) = 3 + 6x \cdot \frac{1}{x} + \ln x(6)$ = 9 + 6 ln x $f''(x) = 0 \Longrightarrow 9 + 6 \ln x = 0$ ln x = -1.5 x = e^{-1.5} or x = 0.223	• Correct $f'(x)$.	 Correct f'(x). AND Correct f''(x). AND Correct x-value. 	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t	2t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{dy}{dx} = \frac{2x - 4x^3}{x^2 - x^4 + 1}$	Correct derivative.		
(b)(i) (ii) (iii)	x = 8 x = -4 The limit does not exist.	• 2 out of 3 correct responses.		
(c)	$\frac{dx}{dt} = \sqrt{2\pi} \cos\left(\frac{\pi t}{5}\right)$ $\frac{dy}{dt} = \sqrt{2\pi} \sin\left(\frac{\pi t}{5}\right) \Rightarrow$ $\frac{dy}{dx} = \tan\left(\frac{\pi t}{5}\right)$ When $t = 6.25 \Rightarrow$ $\frac{dy}{dx} = \tan(1.25\pi) = 1$ Normal gradient: $m = -1$	• Correct expression for $\frac{dx}{dt}$ AND $\frac{dy}{dt}$.	• Gradient of the normal found.	
(d)	$f(x) = x^{-1} - 2x^{-3}$ $f'(x) = -x^{-2} + 6x^{-4} = 0$ $\frac{6}{x^4} = \frac{1}{x^2}$ $6x^2 - x^4 = 0$ $x^2(6 - x^2) = 0$ $x \neq 0 \text{ so } x = \pm\sqrt{6}$ $f''(x) = 2x^{-3} - 24x^{-5}$ $f''(\sqrt{6}) = -0.136 < 0 \text{ i.e. maximum}$ $f''(-\sqrt{6}) = 0.136 > 0 \text{ i.e. minimum}$ Maximum at $\left(\sqrt{6}, \frac{\sqrt{6}}{9}\right) = (2.45, 0.2722)$ Minimum at $\left(-\sqrt{6}, \frac{-\sqrt{6}}{9}\right) = (-2.45, -0.2722)$	• Correct values of <i>x</i> found, with evidence of derivative.	• Co-ordinates and nature of the two turning points found and distinguished, with evidence of a calculus method.	

(d)	$f(x) = x^{-1} - 2x^{-3}$ $f'(x) = -x^{-2} + 6x^{-4}$ $= \frac{-1}{x^2} + \frac{6}{x^4}$ $f'(x) = 0 \Rightarrow \frac{-1}{x^2} + \frac{6}{x^4} = 0$ $x^4 - 6x^2) = 0$ $x^4 - 6x^2) = 0$ $x^2(x^2 - 6) = 0$ x = 0 not possible $x^2 - 6 = 0$ $x = \pm\sqrt{6} \text{ or } x = \pm 2.45$ Second derivative test : $f''(x) = 2x^{-3} - 24x^{-5}$ $= \frac{2}{x^3} - \frac{24}{x^5}$ $f''(\sqrt{6}) = -0.136 = -\frac{\sqrt{6}}{18}$ Since $f''(\sqrt{6}) < 0, x = \sqrt{6}$ is a local maximum. $f''(\sqrt{6}) = -0.136 = -\frac{\sqrt{6}}{18}$ Since $f''(\sqrt{6}) > 0, x = -\sqrt{6}$ is a local minimum. Maximum turning point when $x = \sqrt{6}$. Minimum turning point when $x = -\sqrt{6}$.	 Correct derivative. AND Correct two values of <i>x</i> found (not <i>x</i> = 0). 	• <i>x</i> -coordinates of both stationary points found. AND The nature of the two turning points found with a correct first or second derivative test. Not required: $f(\sqrt{6}) = \frac{\sqrt{6}}{9}$ = 0.272 $f(-\sqrt{6}) = \frac{\sqrt{6}}{9}$ = -0.272	
-----	---	--	---	--

(e)	$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{\frac{-x}{a}} \right)$ $= \left(\frac{a}{2} e^{\frac{x}{a}} + \frac{a}{2} e^{\frac{-x}{a}} \right)$ $\frac{dy}{dx} = \frac{1}{2} e^{\frac{x}{a}} - \frac{1}{2} e^{\frac{-x}{a}}$ $\frac{d^2 y}{dx^2} = \frac{1}{2a} e^{\frac{x}{a}} + \frac{1}{2a} e^{\frac{-x}{a}}$ $\left(\frac{dy}{dx} \right)^2 = \frac{1}{4} e^{\frac{2x}{a}} + \frac{1}{4} e^{\frac{-2x}{a}} - \frac{1}{2}$ $LHS = a \frac{d^2 y}{dx^2}$ $= \frac{1}{2} e^{\frac{x}{a}} + \frac{1}{2} e^{\frac{-x}{a}}$ $RHS = \sqrt{1 + \left(\frac{dy}{dx} \right)^2}$ $= \sqrt{1 + \frac{1}{4} e^{\frac{2x}{a}} + \frac{1}{4} e^{\frac{-2x}{a}} - \frac{1}{2}}$	#(1) #(2)	• Correct expression for $\frac{dy}{dx}$.	• Correct expression for $\frac{d^2y}{dx^2}$. AND Evidence of progress with substitution into the differential equation Reaches either stage #(1) OR stage #(2).	 T1 Reaches both stage #(2) AND stage #(3) with correct derivatives. OR Correct solution but with one minor error. T2 Correct proof with correct derivatives.
	$= \sqrt{\frac{1}{4}e^{\frac{2x}{a}} + \frac{1}{4}e^{\frac{-2x}{a}} + \frac{1}{2}}$ $= \sqrt{\left(\frac{1}{4}e^{\frac{2x}{a}} + e^{\frac{-2x}{a}}\right)^2}$ $= \frac{1}{2}\left(e^{\frac{x}{a}} - e^{\frac{-x}{a}}\right)$ $= a\frac{d^2y}{dx^2}$ $= LHS \text{ as required}$	#(3)			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t	2t

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence	
0 – 7	8– 12	13 – 18	19 – 24	