Pilot Assessment Schedule – 2023

Mathematics and Statistics: Demonstrate mathematical reasoning (91947)

Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$T = \pi \times \sqrt{\frac{2.5 \times 0.9659}{9.81}}$ $= \pi \times \sqrt{0.2462}$ $= \pm \pi \times 0.4961$ $= \pm 1.5587$ $\pm \text{ Not required.}$ Allow C.A.O.	• Correct answer.		
(b)(i)	Area of one label = $2\pi \times 4.5 \times 15$ = 424.115 cm ² Total Area of all labels = 12×424.115 = 5089.38 cm ² Allow any sensible rounding. Allow 1620 π cm ² .	 Area of one label. OR Total Area of all labels but with a minor error. 	• Correct answer.	
(ii)	Volume of one tin = $15\pi p^2$ Volume of 12 tins = $180\pi p^2$ Volume of the box = $720p^2$ Volume of space = $720p^2 - 180\pi p^2$ = $180p^2(4 - \pi)$ Proportion Space = $\frac{180p^2(4 - \pi)}{720p^2}$ = $\frac{(4 - \pi)}{4}$	• Volume of one $tin = 15\pi p^2$ OR Volume of one $box = 720p^2$	 Volume of space = 180p²(4 – π) OR Proportion space with a minor error. 	• Correct working.
(c)(i)	AB2 = 702 + 1402 AB2 = 24500 $AB = \sqrt{24500}$ AB = 156.52 km Not required to show that angle APB = 90°	• Correct answer, with appropriate working.		
(ii)	$\tan \angle ABP = \frac{70}{140}$ $\angle ABP = \tan^{-1} \left(\frac{70}{140} \right)$ $\angle ABP = 26.57^{\circ}$ Required bearing $= 180^{\circ} + 120^{\circ} + 26.57^{\circ}$ $= 326.57^{\circ}$ Allow other valid methods.	 Finding, with appropriate working that ∠ABP = 26.57° OR CAO 	Correct bearing.	

(iii)	Using speed = $\frac{\text{distance}}{\text{time}}$ For ship W: $k = \frac{70}{\text{Time}_W}$ Time _W = $\frac{70}{k}$ For ship V: $S_V = \frac{140}{\text{Time}_V}$ Time _V = $\frac{70}{S_V}$ But Time _W + Time _V = 4 $\frac{70}{k} + \frac{140}{S_V} = 4$ $\frac{140}{S_V} = 4 - \frac{70}{k}$ $\frac{140}{S_V} = \frac{4k - 70}{k}$ $S_V = \frac{140k}{4k - 70}$ Allow equivalent solutions.	• Expression for time of ship W. OR Expression for time of ship V. OR $y = \frac{140}{4}$ AND $k = \frac{70}{4}$	• Forming the equation $\frac{70}{k} + \frac{140}{S_V} = 4$ OR Correct expression for Sv, but with a minor error. OR v = 2k	• Correct expression for Sv.
-------	---	--	---	---------------------------------

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE question attempted towards solution.	1u	2u	3u	1r	2r	t1	t2

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i)	$\angle HAB = \frac{(8-2) \times 180^{\circ}}{8}$ $= 135^{\circ}$ $\angle ZAB = v = \frac{135^{\circ}}{2} = 67.5^{\circ}$ Do not allow assumption of $v = 67.5^{\circ}$.	• Clear and justified working to show that $v = 67.5^{\circ}$.		
(ii)	In triangle ZAX: $\sin 67.5 = \frac{XZ}{120}$ $XZ = 120 \times \sin 67.5$ $XZ = 110.87 \text{ cm}$ Also $\cos 67.5 = \frac{AX}{120}$ $AX = 120 \times \cos 67.5$ $AX = 45.92 \text{ cm}$ Area of triangle ZAX: $= \frac{1}{2} \times 45.92 \times 110.87$ $= 2545.69 \text{ cm}^{2}$ Area of whole octagon: $= 16 \times 2515.69$ $= 40\ 730.99 \text{ cm}^{2}$ Allow other valid methods.	 Finding, with appropriate working that XZ = 110.87 cm. OR Finding, with appropriate working that AX = 45.92 cm. OR Consistent area of triangle. OR Area of octagon, but with a minor error. 	• Correct answer for the area of the whole octagon.	
(iii)	For the <i>n</i> -sided table: $\angle HAB = \frac{(n-2) \times 180^{\circ}}{n}$ $\angle ZAB = v = \frac{(n-2) \times 180^{\circ}}{2n}$ In triangle ZAX: $\sin\left(\frac{(n-2) \times 180}{2n}\right) = \frac{XZ}{p}$ $XZ = p \sin\left(\frac{(n-2) \times 180}{2n}\right)$ Also AX = $p \cos\left(\frac{(n-2) \times 180}{2n}\right)$ Area of triangle ZAX: $= \frac{1}{2} \times p^{2} \times \sin\left(\frac{(n-2) \times 180}{2n}\right) \times \cos\left(\frac{(n-2) \times 180}{2n}\right)$ Area of triangle ZAB: $= p^{2} \times \sin\left(\frac{(n-2) \times 180}{2n}\right) \times \cos\left(\frac{(n-2) \times 180}{2n}\right)$ Area of triangle ZAB: $= p^{2} \times \sin\left(\frac{(n-2) \times 180}{2n}\right) \times \cos\left(\frac{(n-2) \times 180}{2n}\right)$ Area of whole polygon: $= np^{2} \times \sin\left(\frac{(n-2) \times 180}{2n}\right) \times \cos\left(\frac{(n-2) \times 180}{2n}\right)$	 Finding expression for angle v. OR Finding expression for height h. OR Finding expression for AX. 	 Finding expression for area of triangle ZAX. OR Finding consistent expression for area of whole polygon. OR Finding expression for area of whole polygon, with one error. 	• Finding a correct expression for the area of the whole polygon table. Allow one minor error.

	Alternative Method In triangle ZAX: $AX = p\cos\left(\frac{(n-2)\times180}{2n}\right)$ Then Pythagoras' theorem in triangle ZAX gives: $XZ^{2} = p^{2} - p^{2}\cos^{2}\left(\frac{(n-2)\times180}{2n}\right)$ $XZ = \sqrt{p^{2} - p^{2}\cos^{2}\left(\frac{(n-2)\times180}{2n}\right)}$ $XZ = p\sqrt{1 - \cos^{2}\left(\frac{(n-2)\times180}{2n}\right)}$ Area of triangle ZAB $= p^{2} \times \sqrt{1 - \cos^{2}\left(\frac{(n-2)\times180}{2n}\right)}$ Area of whole polygon $= p^{2} \times \sqrt{1 - \cos^{2}\left(\frac{(n-2)\times180}{2n}\right)}$ $\times \cos\left(\frac{(n-2)\times180}{2n}\right)$ $\times \cos\left(\frac{(n-2)\times180}{2n}\right)$			
(b)(i)	Or equivalent solution. Perimeter = 100 cm 2x + 2y = 100 x + y = 50 y = 50 - x OR $y^2 = x^2 + 10^2$ $y = \sqrt{x^2 + 100}$ OR equivalent.	• Finding any correct equation involving <i>x</i> and <i>y</i> .	• Finding <i>y</i> in terms of <i>x</i> .	
(ii)	Pythagoras Theorem: $x^{2} + 10^{2} = (50 - x)^{2}$ #1 $x^{2} + 100 = 2500 - 100x + x^{2}$ 100x = 2400 x = 24 cm Area of triangle $\frac{1}{2} \times 48 \times 10 = 240$ cm ²	• Expanding RHS to (#1). OR Consistent simplification to equation in its simplest form. OR CAO	• Finding $x = 24$ cm. OR Area of triangle but with a minor error.	• Area of triangle found.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE question attempted towards solution.	TWO questions attempted towards solution.	1u	2u	lr	2r	t1	t2

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	y = 5x + 15 Accept $5x + 15$	Correct answer.		
(ii)	$y = 2x^2 - 2x$ Allow any equivalent version.	Coefficient of x^2 or x correct. AND Recognition of a quadratic equation.		
(iii)	$2x^{2} - 2x = 5x + 15$ $2x^{2} - 7x - 15 = 0$ (#1) $(2x + 3)(x - 5) = 0$ $2x + 3 = 0 \text{ AND } x - 5 = 0$ $x = \frac{-3}{2} \text{ AND } x = 5$ Allow any equivalent form. Allow consistency from (i) and (ii) as long as quadratic equation is formed.	Formaing the quadratic equation in three terms (# 1) OR Consistent factorisation of quadratic at Level 6.	Both values of <i>x</i> .	
(b)	Accurate graph drawn of y = 10x + 24 Accurate graph drawn of $y = 3x^2 - 14x - 120$ Intersection points identified x = 12 and $x = -4Allow the algebraic rearrangement to3x^2 - 24x - 144 = 0 orx^2 - 8x - 48 = 0 and then a graphicalmethod using either of these graphsDo not allow C.A.O.Must have evidence of a graphicalmethod for the award of grade r or gradet.$	Accurate graph of any of $y = 3x^2 - 14x - 120$ $y = 3x^2 - 24x - 144$ $y = x^2 - 8x - 48$ OR Both intersection points identified algebraically. OR Evidence of a systematic process involving tables and method of trial and improvement for the two solutions.	Both intersection points identified, but not accurately.	Both intersection points identified accurately. AND with evidence of use of an accurate graph.
(c)	Area = 20 $\frac{1}{2} \times x \times (2x + x + 7) = 20$ (#1) x(3x + 7) = 40 $3x^2 + 7x - 40 = 0$ (3x - 8)(x + 5) = 0 (#2) Either $3x - 8 = 0$ or $x + 5 = 0$ $x = \frac{8}{3}$ or $x = -5$ ignore	Setting up relevant equation (#1) OR Consistent factorisation	Reaching stage (#2) OR Consistent solutions	$x = \frac{8}{3}$ with evidence that $x = -5$ has been ignored.

NCEA Level 1 Mathematics and Statistics RAS (91947) 2023 — page 6 of 6

Solution to Question Three (b)

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE point made incompletely.	lu	2u	3u	lr	2r	1t	2t

Cut Scores

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 6	7 – 12	13 – 18	19 – 24	