Quantities, Units, Symbols and Nomenclature used in NCEA Chemistry Level 2 Examination Papers

NCEA Chemistry examinations will use the following information, which has been based on International Union of Pure and Applied Chemistry (IUPAC) recommendations. Candidates should be encouraged to use this IUPAC terminology, but those who use other terminology will not be penalised if their answers indicate a clear understanding of the chemistry involved.


General Chemistry
Symbols for the physical quantities, $M$, $V$, $H$, $K$, are written in italics (sloping letters). Any following subscripts will be in upright type.

<table>
<thead>
<tr>
<th>Symbols / Expressions</th>
<th>Units in common use</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M$, molar mass, is the mass of one mole of a defined substance and will be used for elements and compounds.</td>
<td>g mol$^{-1}$</td>
</tr>
<tr>
<td>$V$, volume. A looped ℓ is not used in these abbreviations.</td>
<td>L and mL</td>
</tr>
<tr>
<td>$n$, amount of substance, expressed in moles. (See details under ‘Amount of Substance’ below.)</td>
<td>mol</td>
</tr>
<tr>
<td>$c$, amount concentration, is expressed as moles per litre, also denoted by the format [ ]. Concentrations may also be written as mass concentration, expressed as grams per litre.</td>
<td>mol L$^{-1}$ g L$^{-1}$</td>
</tr>
</tbody>
</table>

Amount of Substance
This is a physical quantity, symbol $n$ (italic $n$), measured in a unit called the mole, which has the abbreviation mol.

The term ‘number of moles’ is to be avoided. The term, ‘amount of substance in moles’ is preferred. In the same manner, the size of an object can be described in terms of its ‘length in metres’, rather than its ‘number of metres’.

Graph Axes and Table Headings
Labelled as quantity / unit, eg $c$ / mol L$^{-1}$. Only values will then be written on the axes or in a table.
Enthalpy changes, $\Delta H$

Units commonly used kJ mol$^{-1}$

$\Delta H^\circ$, standard enthalpy of reaction when reactants and products are in their standard state (usually the state at 25°C). For example:

$$2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2\text{H}_2\text{O}(\ell) \quad \Delta H^\circ(\text{H}_2\text{O}, \ell) = -570 \text{ kJ mol}^{-1}$$

The term mol$^{-1}$ means per mole of reaction, which is determined by the chemical equation; ie 2 mol of H$_2$ reacting with 1 mol of O$_2$ to give 2 mol of H$_2$O.

Note (i) The superscript $^\circ$ denotes a defined standard state.

(ii) The alternative superscript $^\theta$ (plimsoll) is acceptable.

(iii) A space is always left between any value and its unit, as well as between units for composite units.

Equilibrium Constant, $K$

Constants will be dimensionless, ie have no units, in keeping with current IUPAC conventions. They will include:

- $K_c$ General equilibrium constant in which the equilibrium composition is expressed in terms of concentration of species
- $K_w$ Dissociation constant of water

$p$ notation will be restricted to: $\text{pH}$ for $-\log_{10} [\text{H}_3\text{O}^+]$

Chemical Formulae

These denote entities composed of more than one atom (molecules, simple and complex ions, groups of atoms, etc).

<table>
<thead>
<tr>
<th>Formula</th>
<th>Information conveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>one water molecule or one mole of water</td>
</tr>
<tr>
<td>$\frac{1}{2}$O$_2$</td>
<td>half a mole of oxygen molecules</td>
</tr>
<tr>
<td>Zn$_3$(PO$_4$)$_2$</td>
<td>one mole of zinc phosphate comprising zinc and phosphate ions in a 3:2 ratio</td>
</tr>
<tr>
<td>2MgSO$_4$</td>
<td>two moles of magnesium sulfate</td>
</tr>
<tr>
<td>$\frac{1}{5}$KMnO$_4$</td>
<td>one-fifth of a mole of potassium permanganate</td>
</tr>
</tbody>
</table>

# Indicates examples that are artificial and are used as a convenient way of calculating amounts of substance in moles.

Equations for Chemical Reactions

- $\text{H}_2(\text{g}) + \text{Br}_2(\text{g}) \rightarrow 2\text{HBr}(\text{g})$ forward reaction
- $\text{H}_2(\text{g}) + \text{Br}_2(\text{g}) \Leftrightarrow 2\text{HBr}(\text{g})$ equilibrium

States of Aggregation

These are written in parentheses printed in italic type, immediately after the formula or substance and on the same line as chemical formula symbols.

<table>
<thead>
<tr>
<th>s solid, l liquid, g gas or vapour</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq aqueous solution (dissolved in water)</td>
</tr>
<tr>
<td>HCl(g) hydrogen chloride in the gaseous state</td>
</tr>
</tbody>
</table>

Temperature

Celsius temperature $^\circ$C

Pressure

Units are pascals (Pa), or more commonly kPa. Standard pressure is $10^5$ Pa.
**IUPAC Approved Spelling**

Spelling of the element with atomic number 16 is the IUPAC recommended spelling of **sulfur**. Derived ions have consistent spelling:

```
    eg sulfide  sulfate  sulfite  thiosulfate
```

**Lewis Structures**

These show the arrangement of valence electrons in molecules. Bonding electrons may be represented using 

```
:  or  
```

For **F₂**

```
 :F−F:   or   :F:F:
```

For **O₂**

```
 :O=O:   or   :O∶O:
```

**Organic Chemical Formulae**

<table>
<thead>
<tr>
<th>Information conveyed</th>
<th>Example: lactic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>empirical formula</strong></td>
<td>Stoichiometric proportions of atoms only.</td>
</tr>
<tr>
<td><strong>molecular formula</strong></td>
<td>Simplest ratio formula.</td>
</tr>
<tr>
<td><strong>structural formula</strong></td>
<td>Formula of the actual molecule.</td>
</tr>
</tbody>
</table>

(a) All atoms and bonds are shown.

(b) Bonds to hydrogen are not shown

```
CH₃−CH−C=O   OR   CH₃CH=O   OR   H₃CCH=O
    OH         OH         OH
```

OR

Only bonds to substituents are shown.

```
CH₃CH₂CO₂H   OR   CH₃CH₂COOH
    OH         OH
```

(c) Stereochemistry (3-D arrangement of atoms) is shown.

```
CH₃
    H...C=O
    HO
    OH
```

The structural formulae in (b) are referred to as condensed structural formulae.
**Organic Chemical Nomenclature**

IUPAC conventions will be followed. There is ongoing discussion on some of the following naming. Candidates will be given full credit for alternative naming if an unambiguous structure is implied. Some examples are:

<table>
<thead>
<tr>
<th>Structure</th>
<th>IUPAC name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3]</td>
<td>2-methylpentane</td>
</tr>
<tr>
<td>[\text{CH}_3 - \text{CH} - \text{CH} - \text{CH}_3]</td>
<td>3-methylbutan-2-ol</td>
</tr>
<tr>
<td>[\text{CH}_3 - \text{CH} - \text{CH}_2 - \text{C} - \text{OH}]</td>
<td>3-methylpentanoic acid</td>
</tr>
<tr>
<td>[\text{CH}_3 - \text{CH} - \text{CH} - \text{CH}_3]</td>
<td>4-bromo-3-chloropentan-2-ol</td>
</tr>
<tr>
<td>[\text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{NH}_2]</td>
<td>propan-1-amine</td>
</tr>
</tbody>
</table>

**References**