White Dot

Two lines cross so

\[y = 2x - 3 \]
\[x(y + 1) = 4 \]
\[x(2x - 3 + 1) = 4 \]
\[x(2x - 2) = 4 \]
\[2x^2 - 2x = 4 \]
\[x^2 - x - 2 = 0 \]
\[(x - 2)(x + 1) = 0 \]
\[x = 2 \text{ or } x = -1 \]

White dot at (2, 1)

Black Dot

\[x^2 - 6x + y^2 = 0 \text{ and } y = 2x - 3 \]
\[x^2 - 6x + (2x - 3)^2 = 0 \]
\[x^2 - 6x + 4x^2 - 12x + 9 = 0 \]
\[5x^2 - 18x + 9 = 0 \]
Using the calculator solver mode
\[x = 0.6 \text{ or } x = 3 \]
so for the black dot \(x = 0.6 \) and \(y = -1.8 \)

Grey Line
parallel to \(y = 2x - 3 \)
\[y = 2x + 6 \]
\[x(2x + 7) = 4 \]
\[2x^2 + 7x - 4 = 0 \]
\[x = 0.5 \text{ calculator solver} \]
\[y = 1 \]

Tangent

Try \(c = 2 \)
so \(y = 2x + 2 \)
\[x^2 - 6x + (2x + 2)(2x + 2) = 0 \]
\[x^2 - 6x + 4x^2 + 4x + 4x + 4 = 0 \]
\[5x^2 + 2x + 4 = 0 \]
Using the calculator solver mode – no answers

Try \(c = 1 \)
so \(y = 2x + 1 \)
\[x^2 - 6x + (2x + 1)(2x + 1) = 0 \]
\[x^2 - 6x + 4x^2 + 2x + 2x + 1 = 0 \]
\[5x^2 - 2x + 1 = 0 \]
Using the calculator solver mode – no answers

Try \(c = 0 \)
so \(y = 2x \)
\[x^2 - 6x + 4x^2 = 0 \]
\[5x^2 - 6x = 0 \]
Using the calculator solver mode
\(x = 0 \) or \(1.2 \)
c must be between 0 and 1.2
so \(c = 0.6 \)
so tangent is \(y = 2x + 0.6 \)