Number	AS91392	Version	2	Page 1 of 3		
Achievement Standard						
Subject Reference		Chemistry 3.6				
Title		Demonstrat aqueous sy	e understanding of equilibriu stems	um principles in		
Level	3	Credits	5 Assessmen	t External		
Subfield	Science					
Domain	Chemistry					
Status		Registered	Status date	04 December 2012		
Planned review date		31 December 2019	Date version published	17 November 2016		

This achievement standard involves demonstrating understanding of equilibrium principles in aqueous systems.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate	 Demonstrate in-depth	• Demonstrate comprehensive
understanding of	understanding of	understanding of equilibrium
equilibrium principles in	equilibrium principles in	principles in aqueous
aqueous systems.	aqueous systems.	systems.

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to the Material World achievement objectives:

Investigate and measure the chemical and physical properties of a range of groups of substances.

Relate properties of matter to structure and bonding.

Develop an understanding of and use the fundamental concepts of chemistry (for example, equilibrium and thermochemical principles) to interpret observations.

It is also related to the material in the *Teaching and Learning Guide for Chemistry*, Ministry of Education, 2010 at <u>http://seniorsecondary.tki.org.nz</u>.

Page 2 of 3

This standard is also derived from *Te Marautanga o Aotearoa*. For details of *Te Marautanga o Aotearoa* achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 *Demonstrate understanding* involves describing, identifying, and giving an account of aqueous systems using equilibrium principles. This requires the use of chemistry vocabulary, symbols, and conventions and may include related calculations.

Demonstrate in-depth understanding involves using equilibrium principles to explain properties of aqueous systems. This requires explanations that use chemistry vocabulary, symbols, and conventions and may include related calculations.

Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing properties of aqueous systems in terms of equilibrium principles. This requires the consistent use of chemistry vocabulary, symbols, and conventions and may include related calculations.

- 3 *Aqueous systems* are limited to those involving sparingly soluble ionic solids and acidic and basic solutions (in which proton transfer occurs).
- 4 *Equilibrium principles in aqueous systems* are limited to qualitative descriptions and/or calculations involving:
 - relative concentrations of dissolved species
 - sparingly soluble ionic solids
 - relating solubility to K_{s}
 - solubility of solids in water and in solutions already containing one of the ions A or B (a common ion) or due to the formation of a complex ion, or the reaction of a basic anion with added acid
 - predicting precipitation or dissolution
 - acidic and basic solutions (includes buffers)
 - acid/base strength, K_a (p K_a)
 - concentration of species present in weak acidic and/or basic solutions (includes buffers)
 - relating concentration of species to pH and conductivity
 - titration curves to represent an acid-base system including selection of indicators (titrations of weak acids with weak bases are excluded).
- 5 Sparingly soluble ionic solids are limited to AB, A₂B and AB₂ types where neither of the ions A nor B reacts further with water.
- 6 Acidic and basic solutions are monoprotic acids, bases, salts, and buffers (those in which the extent of reaction is small so that the equilibrium concentration of a dissolved weak acid or base can be approximated by the initial concentration).
- 7 Assessment Specifications for this achievement standard can be accessed through the Chemistry Resources page found at <u>http://www.nzqa.govt.nz/qualifications-</u> <u>standards/qualifications/ncea/subjects/</u>.

Replacement Information

This achievement standard replaced AS90700.

Quality Assurance

- 1 Providers and Industry Training Organisations must have been granted consent to assess by NZQA before they can register credits from assessment against achievement standards.
- 2 Organisations with consent to assess and Industry Training Organisations assessing against achievement standards must engage with the moderation system that applies to those achievement standards.

Consent and Moderation Requirements (CMR) reference 0233