Number	AS91524	Version

Page 1 of 3

Achievement Standard

2

Subject Re	Bubject Reference Physics 3.4					
Title			Demonstrate understanding of mechanical systems			
Level	3		Credits	6	Assessment	External
Subfield	Science					
Domain	Physics					
Status		Regist	ered	Status date)	4 December 2012
Planned review date 31 Dec		cember 2019	Date version published		17 November 2016	

This achievement standard involves demonstrating understanding of mechanical systems.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate	 Demonstrate in-depth	 Demonstrate comprehensive
understanding of	understanding of	understanding of mechanical
mechanical systems.	mechanical systems.	systems.

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 8. The standard is aligned to Physical inquiry and physics concepts in the Physical World strand and Communicating in science in the Nature of Science strand, and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at http://seniorsecondary.tki.org.nz.

This standard is also derived from *Te Marautanga o Aotearoa*. For details of *Te Marautanga o Aotearoa* achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 *Demonstrate understanding* involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation.

Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation.

Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

- 3 *Mechanical systems* include mathematical solutions and/or written descriptions. Written descriptions may include graphs or diagrams.
- 4 Assessment is limited to a selection from the following:

Translational Motion

Centre of mass (1 and 2 dimensions); conservation of momentum and impulse (2 dimensions only).

Circular Motion and Gravity

Velocity and acceleration of, and resultant force on, objects moving in a circle under the influence of 2 or more forces, Newton's Law of gravitation, satellite motion.

Rotating Systems

Rotational motion with constant angular acceleration; torque; rotational inertia; conservation of angular momentum; conservation of energy.

Oscillating Systems

The conditions for Simple Harmonic Motion, angular frequency, variation of displacement, velocity and acceleration with time, phasor diagrams, reference circles, damped and driven systems, resonance, conservation of energy.

Relationships

$d = r\theta$	$V = T_{\odot}$	$a = r\alpha$	$\omega = \frac{\Delta \theta}{\Delta t}$
$\alpha = \frac{\Delta \omega}{\Delta t}$	$\omega = 2\pi f$	$E_{\kappa(ROT)} = \frac{1}{2} I \omega^2$	
$\omega_f = \omega_i + \alpha t$	$\theta = \frac{\left(\omega_i + \omega_f\right)}{2}t$	$\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha\theta$	$\theta = \omega_i t + \frac{1}{2} \alpha t^2$
$\tau = I \alpha$	L = mvr	$L = I\omega$	$F_g = \frac{GMm}{r^2}$
$T=2\pi\sqrt{rac{l}{g}}$	$T=2\pi\sqrt{\frac{m}{k}}$		
$y = A \sin \omega t$	$v = A\omega \cos \omega t$	$a = -A\omega^2 \sin \omega t$	$a = -\omega^2 y$
$y = A\cos\omega t$	$v = -A\omega\sin\omega t$	$a = -A\omega^2 \cos \omega t$	
	~	$m_1 x_1 + m_2 x_2$	

$$x_{COM} = \frac{m_1 + m_2}{m_1 + m_2}$$

5 Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at <u>http://www.nzqa.govt.nz/qualifications-</u> <u>standards/qualifications/ncea/subjects/</u>.

Replacement Information

This achievement standard replaced unit standard 6397 and AS90521.

Quality Assurance

- 1 Providers and Industry Training Organisations must have been granted consent to assess by NZQA before they can register credits from assessment against achievement standards.
- 2 Organisations with consent to assess and Industry Training Organisations assessing against achievement standards must engage with the moderation system that applies to those achievement standards.

Consent and Moderation Requirements (CMR) reference 0233