

SUPERVISOR'S USE ONLY

91579

Mana Tohu Mātauranga o Aotearoa **New Zealand Qualifications Authority**

Level 3 Calculus 2025

91579 Apply integration methods in solving problems

Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Apply integration methods in solving problems.	Apply integration methods, using relational thinking, in solving problems.	Apply integration methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have the Formulae and Tables Booklet L3–CALCF.

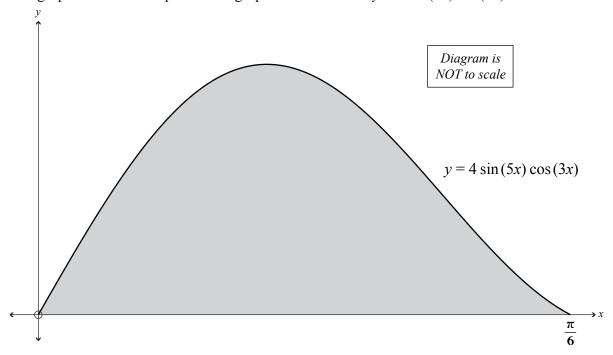
Show ALL working.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2–16 in the correct order and that none of these pages is blank.

Do not write in the margins (﴿﴿ ﴿ ﴿ ﴾). This area will be cut off when the booklet is marked.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.


QUESTION ONE

		<u></u>
(a)	Find	$\int 6 \sec(3x) \tan(3x) dx$

(b)	Solve the differential equation	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{x} +$	$\frac{2}{\sqrt{x}}$, given that $y = 10$ when x	= 4

Determine the pos You must use calcu			v integration n	needed to solve	the problem
iou must use eater	nus una snow m	ic resuits of an	y iniegranion n	iccaca to solve	me prootem

(d) The graph below shows part of the graph of the function $y = 4\sin(5x)\cos(3x)$.

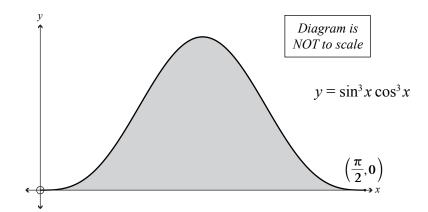
Find the shaded area under the curve between x = 0 and $x = \frac{\pi}{6}$. You must use calculus and show the results of any integration needed to

i musi use caicui	us ana snow in	e resuits of ar	ny integration	i needed to sc	nve ine probl	em.

Given that $y = 3$ when $x = 0$, find the value(s) of y when $x = 2$.						
You must use ca	lculus and show the	results of any ini	tegration needed	l to solve the proble	olem.	

QUESTION TWO

(a)	Eind	10 da
(a)	Find	$\frac{1}{(2x+1)^6} dx$

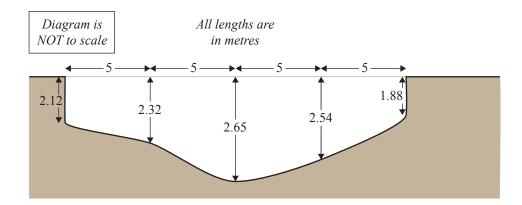

(b)	The rate of change of a particular function, p , is given by	$\frac{\mathrm{d}p}{\mathrm{d}t} = 5\cos(4t)$

Find the function, given that p = 8 when $t = \frac{\pi}{24}$.

)	Find the value of the constant k, given that $\int_0^k \frac{1}{\sqrt{4x+1}} dx = 1.$
	You must use calculus and show the results of any integration needed to solve the problem.

Initially, at a fixed point P, the particle had a velocity of 6 m s ⁻¹ .				
How far f	From the point P is the particle 3 sec	onds after timing started?		
tou must	use calculus and snow the results of	f any integration needed to solve the problem.		

The graph below shows the function $y = \sin^3 x \cos^3 x$. (e)

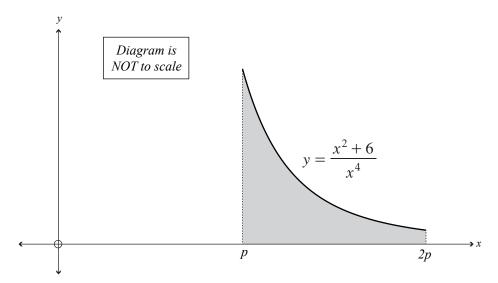


Find the shaded area under the curve between the values of $x = 0$ and $x = \frac{\pi}{2}$. You must use calculus and show the results of any integration needed to solve the problem.						

QUESTION THREE

(a) The diagram below shows the cross-section of a hole dug in the ground.

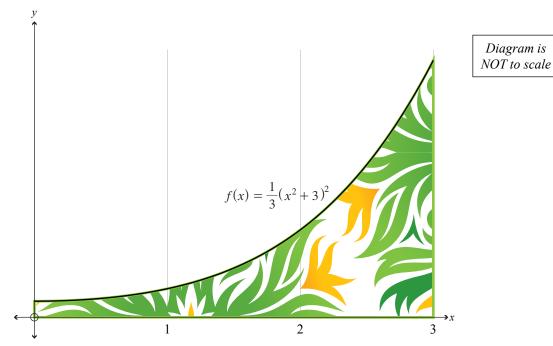
The depth of the hole is measured every 5 metres across the top of the hole.



Using the trapezium rule, find an estimate for the area of the cross-section of the hole.

(b) Find $\int_{1}^{k} \frac{10}{2x-1} dx$, giving your answer in terms of k, where k is a constant and k > 1.

Given that $y = 2$ when	$x = \frac{2}{3}$, find the v	alue(s) of y wh	$x = \frac{4}{5}$.		
You must use calculus o	and show the resul	ts of any integro	ation needed to	solve the problem	n.


(d) The graph below shows part of the curve $y = \frac{x^2 + 6}{x^4}$, where x > 0.

The area of the shaded region is $\frac{9}{4}$ units².

Prove that $9p^3 - 2p^2 - 7 = 0$.

(e) Murray is planning to hang a piece of his art on a wall. This is shown in the diagram below.

The equation of the curved edge of the piece of art is $f(x) = \frac{1}{3}(x^2 + 3)^2$.

Murray has researched a way to make the picture balance by using the following formula to find the *x*-value of the hanging position: $\frac{\int_0^3 x \, f(x) \, \mathrm{d}x}{\int_0^3 f(x) \, \mathrm{d}x}$,

You must use calculus and show the results of any integration needed to solve the problem.

where f(x) is the equation of the curved edge of the piece of art.

Use this formula to find the *x*-value of the hanging point.

Extra space if required. Write the question number(s) if applicable.

NUMBER	L		
NOMBER			

Extra space if required. Write the question number(s) if applicable.

QUESTION NUMBER		•	` ,	
NUMBER				

Extra space if required. Write the question number(s) if applicable.

QUESTION NUMBER		. ,	
NUMBER			