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QUESTION ONE

(a) Simplify the following, leaving your answer with positive indices:
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(c) David has mounted a square photo on a square piece of card as shown below.
- a Square

: .border

4 -
b} >

The border around the photo is 0

..'—-—"—'-"_'_'_—'___ i * ”
The photo has sides of lengfh (2 — 2) ¢m while the card has sides of (2n + 6) om.

If the total area of the border is 200 em?, find the width of the border.
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(d) A teacher has hired a school bus for $560 for a day trip with students.
The cost of hiring the bus is to be shared equally between the students.

At the last moment{ three of the students were unable to go.

As a result, the cost to each of those who did go was increaseddy $1.50y

How many students finally went on the trip?

Justify your answer.
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QUESTION TWO

(a) Solve the following equation for x:

log,x =10
jo

(b) Solve the following equation for x:
log 49 =2
Justify your answer.
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(d) A computer depreciates continnously in value from $4699 to $1500 over a period of ASSESSOR'S

—————— e

4.25 years.
The value, 8y, of the comput@after its value was $4699 can be modelled by a function

of the form

¥ = Ar!, where r is a constant.

Find the computer’s value after’six|years.
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(e) Make p the subject of the formula:
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QUESTION THREE

. . ) [
(a) The quadratic equation 4x% + bx — 5 = 0 has solutions —— and —5—

2
Find the value of b.
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(b) For what value(s) gt m ddes the equation 6x2 — mx =-3 have two equal roots?
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(¢) Find the value(s) fé@ which the expression kx? - 12x + 5k is always g@er than zero
B S P LTy e R

okt [ +5Y = Ras no. e, .
A= B dae = (Z12Y - 4wk
= M4 - 9okt <o
A0k <« W S
Lk re 7@E- ok >(i’__\5:
s <

o ke

Question Three continues
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on the following page.
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@) Write xi9+2xi-6 as a single fraction in its simplest form.
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(e) Find the value(s) of m for which the equation 2™ = 8" has exactly one solution.
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Subject: | Mathematics Standard: | 91261 Total score: | 24
Grade :
Q o Annotation
1ai 0.1875 would have been acceptable for 3/16.
1 E8 1b The restrictions x # 5, -2/3 were not required.
1d Solution by G.C. rather than factorising was acceptable.
2b Recognition that there cannot be a negative x value for log gains r'.
2 E8 2d The variable r was more commonly found by solving by logs.
2e This is an index approach. Most candidates solved by logs.
3a Could also be solved by substituting either solution into the equation.
3b Necessary to state or show A = 0 for equal roots.
3 E8 3c Has shown that the graph will always be above the x-axis and A<0.

3e

Not required to show that because k > 0, then k > 2.68.
Could also have taken log of both sides.






