

Level 2 Earth \& Space Science 2023
 91192 Demonstrate understanding of stars and planetary systems

Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of stars and planetary systems.	Demonstrate in-depth understanding of stars and planetary systems.	Demonstrate comprehensive understanding of stars and planetary systems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

If you need more room for any answer, use the extra space provided at the back of this booklet.
Check that this booklet has pages $2-16$ in the correct order and that none of these pages is blank.
Do not write in any cross-hatched area (
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

RESOURCE

HR (Hertzsprung-Russell) diagram

Adapted from: http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/stars_hrdiagram.html

This page has been deliberately left blank. The assessment begins on the following page.

QUESTION ONE: RED STARS

Betelgeuse and Proxima Centauri are both red stars. Betelgeuse is easily seen in the constellation of Orion. Proxima Centauri is a star that forms part of the triple star system in the constellation of Centauri. Betelgeuse is 642.5 light years away from Earth, and has a mass of approximately 17 solar masses, while Proxima Centauri is only 4.2 light years away, and has a solar mass of 0.12.
(a) Using the HR diagram on page 2, complete the table comparing the properties of Betelgeuse and Proxima Centauri.

(b) Explain, in detail, using the information from the HR diagram and the star properties in part (a), the reason for the difference in absolute magnitudes of Betelgeuse and Proxima Centauri.
In your answer you should consider:

- the difference between luminosity and absolute magnitude
- surface temperature
- surface area.

 fast, H1 He antis smiting to exes fangs coat by

 n at ar

Betel geese and Proxima Centanri ace in different stages of their life eqele us stars. Betel gene is a had SuperGiant, while Proximo centaur is a main-sequenee star. While their surface temperatures wee similar at approximately 3500 k ha have very different absolute magnitules and luminosities. Due to the differences in size, with Betel geese being approximately If solar masses white Proxima Centenris only 0.12 solar masses, Hey are presumadly not producing equal amombs if heat, and terry its just havderlo maintain surface temperatures when your larger. This explains the liscrepencies between the absolute magnitudes and he I aminosilies of he 2 stars. Wis y Bedel gene Absolute magnitude is the mansure of how bright a thar is without its distance effecting it. white luminosity, is how much emery is being emmitted per see oud by the star. Betel geese has ann absidute magnitude of -5 ** Mv, white having a luminosity if 10^{4}. This is very different to Proximal Centanri's Absoluh magnitude of 15 mu and laminusitg if 10^{-4}. This shows that Betel geese emits abbot more ever gyp per second while having a reasonably small absolute magnithede daw ho the doer size of he star.
Whys as Proximal Cent auri has a highacAbsolute magaitene as the light energy has less 1 travel from the core.
(c) Explain, in detail, how the luminosity of Betelgeuse will change over its life stages, whereas the luminosity of Proxima Centauri will not change until the end of its life.
In your answer you should consider:

- star mass
- surface area
- surface temperature
- life stages.

An annotated diagram may assist your answer.

$$
\begin{aligned}
& \text { Neutron slublsut } \\
& \text { Y BIackhole } \\
& G M C \rightarrow \text { Protostar } \rightarrow M S 5
\end{aligned}
$$

Due to the vast re differences in the solar mass of Butelgeese and Prosima centaur the end shapes of hair lifer as stars will be different. To become a Supergiants you have to have a solar mass greeter than 10 sm . Due ho Proximo Centanni's size of 0.12 solar mass it mont
 to it being Miducificed dwarfs mir stall din ms shan.

 that proximo Conan. in ill be stall at apprasimatily 3500 K , $15 \mathrm{Mo}_{0}$ mes) o^{-6} for harvest of its life.

change to a Plawhery Nebula. In his stage ils cuter gaseone shell will detach and flat off inter space to become a planetary mebala. This will leave out y he core left which be waves a Supper Nova. At this print all fusion will shop, peextaby the lading to no fuel source. Th hydrostatic equilibrium will break a gain subbing the woe to collapse quidhly in un itself. At this point Betelgeuse's core will cher alike with itolf with enough fore e that n
 oct and a Neaticu star will be formed. NLN N en The allison of the cove on itself will cane a powerful she elowave. This means hat Bed gens will have multiple changes in temp centre, Inminosity, end absolute magnitude over the rest of its life stages.

QUESTION TWO: MATARIKI

Source: www.sciencelearn.org.nz/images/697-matariki-pleiades-star-cluster
Matariki is a star cluster indicating the beginning of the New Year to many Maori iwi. It contains many young stars, the brightest of these being 14 young, blue, main-sequence stars that have formed in the associated stellar nebula. These stars have masses in the range of 3 solar masses to 6 solar masses for the largest.
(a) Describe what is meant by the term "stellar nebula".

(b) Explain, in detail, how these young blue stars would have formed.

In your answer you should consider the role gravity plays in star formation.
An annotated diagram may assist your answer.

The stars in he star claster Mahreriki nould have all formed from he collapoe if a bisut Molecular dond. The dond nould have been disturbed by something, petheps seme selar wied and hat wald have cursed all ha dast and gos molemases to aldapze inuards baveds a hewly fuemed graviabtional center. As the mitter moved iunauds hare moidd have been collisions. betueen he moleconles. These collisions cansed he materiads to cacoale, and he create friction. The hange of gravitational potential onergy inte hent from the fridion coubed by he collissions would have melded the matrinal hagher. This nould end up with \& protustars being furmed from the accection. The proto stron mould form he mon gravitalimal wables and they'd wouhtines acrecoling mandel they reached a high enough tempecatene whore the fusion of H to Hobegins. Evantanatly The a shart of nucleur fusion would mem that he ster reandud Hyrostatie equillibrium and could no longer take in new materids. This nould lewe evongh materids for he oher stars in the stiller nobula. Eventallly all 14 of he zoung at stuss would cowh main-sequane and begin mactenn fussion.
(c) Explain, in detail, the life cycle of the smallest (3 solar masses) of these young blue stars from main sequence to the end of its life.
In your answer you should consider:

- the role of gravity in the changing life stages
- fuel usage during the different life stages
- energy changes during the different life stages.

An annotated diagram may assist your answer.

The smallest star of the Matarizi cluster has a solar mass of 3. This mamas that one e it rams out if Hydro gen Lo fuse to Helium it mould become a had Giant. As a red giant is core would shat wutralizy. These coutroutions mould cocotte more best energy going out than in .. he outer gaseous shall. This mould carse the hylrodsatie equilibrium to be broken consing the oulu. shall to exp and until it remeles its mat life phage. Th he mat stage

 and is just shan vedicitig the hat Lahore firm in gavions
 - Hod dui. This: i, the and stage of the smallest ste. firm Ho dal....ndel.i Matniki.

QUESTION THREE: JUPITER AND THE SOLAR SYSTEM

Source: https://blogs.nasa.gov/Watch_the_Skies/2022/09/16/jupiter-to-reach-opposition-closet-approach-to-earth-in-70-years/
Our solar system consists of eight planets, with Jupiter the largest.
(a) Describe the difference between a star and planet.

A star has a wore, in which nachar fusion has taken plane, they we bother

(b) Explain, in detail, how gas giant planets like Jupiter are formed.

In your answer you should consider:

- the role of gravity
- temperature
- solar winds.

An annotated diagram may assist your answer.

$G_{a s}$ planets like Jupiter are formed from protoplanetarg lives. Once a Protester begins fusing H to He and becomes a Main-sequane thar the star nolongee numbs te take in new axial. This is due to the hydrostatic equilibrium being reata which means hat the outset and inward pressure we equal. Thusly being at equilibrium. One hat equillibrinus is reached he leftover materials start bo form a proto-plsatuey disc. As his bise flattens out and the materids are pestled cround bp the solar wind and gravity elisions start to occur. Through Nose collision, the materials begin to accrete and form clumps. Once He accrebul materidels reached approximately 1 km in diameter y ervith shat ed pulling onus materials teals, Mam. This increased the rate of accoction and zoon planetesimal were formed On he protuplanctery die hare uss a frost like the materials inside wee rockier and dense matrids. Since he sole winds couldnt as easily push ham any. Wheres he lighter materials like gases and lee were posted by the solar wind out past the frost lime. This means hat the planetesimals hal formed out
 We necrecte he para protoplanets out past he frost lime noe larger du to heir being more yeses present Non any other dement. The role if the foil lime, gravity, and solerwind, play a key robe in the creation of gesplumets like Jupiter.
(c) The picture below shows Jupiter's three rings, and the four rocky moons that accompany the rings. The rings are mainly made up of very fine dust particles.

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Jupiter_Rings_ca.svg/2560px-Jupiter_Rings_ca.svg.png
Explain, in detail, how Jupiter's four rocky moons and ring system could possibly have been formed.
In your answer you should consider:

- the planet's gravity
- how moons may have formed around Jupiter
- the material making up Jupiter's rings.

An annotated diagram may assist your answer:

Jupiter has 6 rocky moms and a ring so stem that obits it. It is most like that is 4 ropy moons formed from auction if the leftwe materials from Jupiters formation. This is due to hair dose proximity Le Jupiter. as captured asteroids and comets are usually further out. This ambled with Hum being found within Jupiter ring syolum which is made up if leftover dust partidus form Jupiturs formation. The rings air made up of very fine dud aides which means hat hay un h_{2} makrials Leftover from the protuplanelary die that Tapite, formed from. Since The 4 moons are all boche in Jupiters ring sodom it is chem hat hay formed from leftover makrial hat Jupikerdidn't use up from he Proto-Plandary disc.
It is also unlik.ip hat hay formed from a parecepprandita colliding vii th the Tapitio Planetesmal. as hare are inultiple of him and he moons formed Mat wag tend LI be closer in size to The Planet hap orbit. This is why 1 believe hat Ho moons and rings sure ounding Jupiter who format from tox te material leftover from Tupiters formation.

Extra space if required. Write the question number(s) if applicable.

Merit

Subject: Earth \& Space Science
Standard: 91192
Total score: 17

Q	Grade score	Marker commentary
One	M5	The candidate clearly defines luminosity and absolute magnitude within the context of the question. The significance of the numerical values is not clearly understood. Luminosity is linked to surface area for the stars and the lack of probable change in the luminosity of the red dwarf is explained in terms of fusion, mass and outcome.
Two	M6	The candidate provides clear explanation of the link between gravity and star formation process until fusion occurs. The continued "life cycle" process is explained in terms of fuel use through to a white dwarf. Reference is made to the Matariki stars but does not include the significance of the colour.
Three	M6	The candidate explains how gravitational forces become and are involved in the formation of planets. The role of the frostline and solar winds are given and the influence they have on planet formation. The resulting formation of Jupiter's moons are explained in terms of gravitational forces linked to left over materials from planet formation.

