
\square

Level 3 Physics 2023

 91524 Demonstrate understanding of mechanical systems

 91524 Demonstrate understanding of mechanical systems}

Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of mechanical systems.	Demonstrate in-depth understanding of mechanical systems.	Demonstrate comprehensive understanding of mechanical systems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Booklet L3-PHYSR.
In your answers use clear numerical working, words, and/or diagrams as required.
Numerical answers should be given with an appropriate SI unit.
If you need more room for any answer, use the extra space provided at the back of this booklet.
Check that this booklet has pages $2-12$ in the correct order and that none of these pages is blank.
Do not write in any cross-hatched area (
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

QUESTION ONE: HORIZONTAL AND VERTICAL CIRCLES

Tane has a toy car track set. Part of the track is a horizontal banked curve and part of it has a vertical loop. For this question, assume that sideways friction on the tyres is negligible. The toy car has a mass of 0.120 kg .
(a) On the diagram below, draw a vector diagram to identify the net force that is responsible for the car going in a horizontal circle along the banked curve. Label the net

Source: www.walmart.ca/en/ip/hot-wheels-massive-loop-mayhem-track-setmulti/6000203404407

If you need to redraw your response, use the diagram on page 9.
(b) The banked curve of the car track has a radius of 0.750 m .

Calculate the angle of banking when there is no sideways friction on the wheels of the car as it goes around the banked curve at $1.55 \mathrm{~m} \mathrm{~s}^{-1}$.

The diagram below is a simplified version of the vertical circular loop that makes up part of the car track.

If you need to redraw your response to part (c), use the diagram on page 9.
(c) Explain why the person sitting in a car on an actual roller coaster would feel heavier at the bottom of the loop compared to the top of the loop.
Begin your answer by drawing labelled vectors in the diagram at the bottom of the opposite page, to represent the forces acting on the car when it is at the top of the loop AND when it is at the bottom of the loop.
The fectig of aright cons from the support) norms / creation force opposing the graviationd fores. At the bottom as top, thee muse be a set fore towers the radios that acc w the centrigeter fore giving the car circestar motion around the loop. A Fy, the resht fores is equal cos acts down in all situations. All the bottom, fo crate a vertied rel fore towers, the centre, the reaction fore must be greeter than the weight fore, therefore creating a sense of heavies of or weight on the person. At the tope. the reaction force der to its up velocity acts in the same direction as the weight fore e therefor the person feels a smaller reaction fore that makes then feel lingter/less hearyo because for does not have to overcome F_{y} to prose a centimeter fores which it does at the bottom.
(d) The toy car of mass 0.120 kg approaches the vertical circular loop of radius 0.250 m .

Calculate the speed with which the car must approach the bottom of the loop to be able to go around the vertical circular loop, such that the car seems weightless at the top of the loop.
minimus speed when $F \bar{c}=F_{g}$

$\sqrt{9.81 \times 0.25}=1.57 \mathrm{~ms}^{-1}$

$$
1.6 \mathrm{~ms}^{-1}(2.5 \mathrm{f})
$$

QUESTION TWO: ROTATIONAL MOTION

Tane works weekends unloading barrels. In one instance he rolls an empty barrel of mass 5.50 kg and radius 0.280 m , down a ramp that is 1.34 m high. The linear speed of the barrel when it reaches the bottom of the ramp is $3.40 \mathrm{~m} \mathrm{~s}^{-1}$.

(a) Describe the energy changes that take place as the barrel rolls down the ramp.
Gravitation d
potantid energy
energy is
converted into linear
linear
and cotutiond kinetic enegy.
(b) Calculate the rotational inertia of the barrel.

Begin your answer by calculating:

- the gravitational potential energy at the top
- the angular velocity of the barrel as it reaches the bottom of the ramp.

Assume no energy is lost due to friction.

Tane then sits on a swivelling stool, holding a full bottle of water in each hand. He notices that when he holds the bottles with his arms outstretched, he tends to spin more slowly, as compared to when he brings his arms inwards, close to his body.
(c) Explain the reason for this observation.

When he stretches his arms out, the average dwtribution of mass about the axis of rotation increases thess invewing the erective radio and thereon incerwing
his rotational inertia. $L=1 w$. Because he exerts an internat fore to hold the bottles out, there is no extesnet for que therefore angular momentum is conserved. Because $L=1 w$, where L is constant, it he stretches ho arms out, inceewing rotations inertia this cause a proportions decreax in

(d) Tane spins with an angular velocity of $3.00 \mathrm{rad} \mathrm{s}^{-1}$ when his arms are outstretched. When he brings his arms in, he reaches an angular velocity of $7.00 \mathrm{rad} \mathrm{s}^{-1}$ in a time of 4.50 s .
$\Delta \omega=4$
Calculate:

- his angular acceleration
- the number of revolutions made in this time.

$$
\begin{aligned}
& \omega_{i}=3 \quad \omega t: 7 \quad t-4.5 \quad \omega t=\omega_{i}+a t \\
& 4=4.8 a \\
& \begin{aligned}
a=0.89 \mathrm{rads}^{-2} & \omega t^{2}=\mathrm{wi}^{2}+2 a O \\
\cos ^{2} \frac{\Delta \theta}{\Delta t} & 2 a \theta
\end{aligned} \begin{aligned}
& 2 a 0 \\
& \theta=\frac{40}{2 \times 0.89}=22.47 \text { rams }
\end{aligned} \\
& \frac{22.47}{2 \pi}=3.58 \text { revolutions } \\
& 3.6 \text { (2s.6) }
\end{aligned}
$$

QUESTION THREE: SIMPLE HARMONIC MOTION

Tanya is studying the motion of a toy bouncing up and down at the end of a spring that is hanging from the ceiling. The spring has a spring constant of $24.6 \mathrm{~N} \mathrm{~m}^{-1}$.

Tanya draws an acceleration against displacement graph, as shown below, of the toy on the spring that is bouncing up and down in simple harmonic motion.

(a) Given the equation relating to simple harmonic motion as $a=-\omega^{2} y$, describe how the gradient of the graph line relates to the frequency of oscillation.
The grodieds of the lire is equal to the regaling of the spring content $(-h)$. The spring content relates to the freawerg of oxillatroe by $T=2 \pi \sqrt{\frac{m}{h}}$, where $F=\frac{1}{f}$. The gradient of the line is equal to $-\omega^{2}$, whens relates to the frequency of aucilution by $w=2 \pi f$
(b) By calculating the gradient of the graph, show that the period of oscillation is $T=0.199 \mathrm{~s}$, and hence determine the mass of the toy hanging on the spring.

$$
\begin{aligned}
& \text { gradied }=\frac{-20}{0.02}=-1000=\frac{31.62}{2 \pi}=5.03 \quad H_{2} \quad f=\frac{1}{T} \quad T=\frac{1}{1000}=31.62 \mathrm{rases}^{-1} \\
& \omega=2 \pi 6 \quad f=0.199 \mathrm{~s} \\
& T=2 \pi \sqrt{\frac{m}{h}}=\frac{T^{2}}{4 \pi^{2}}=\frac{m}{h} \quad m=\frac{T^{2} h}{4 \pi^{2}} \\
& \frac{T}{2 \pi}=\frac{0.199^{2} \times 24.6}{4 \pi^{2}}=0.0247 \mathrm{hg}
\end{aligned}
$$

(c) Tanya then pulls the spring of period $T=0.199 \mathrm{~s}$ down through a distance of 0.100 m from the equilibrium position, and then releases it so that the toy bounces up and down in simple harmonic motion.

By using a reference circle or otherwise, calculate the time the toy on the spring would take to travel a distance of 0.140 m up from its release position.

If you

AD $A=0.1 \mathrm{~m}$ $\sin \theta=\frac{004}{0.1} \quad 0=\sin ^{-1}\left(\frac{0.04}{0.1}\right)=0.4115$ mads traalld part aquitbiam
toted 0 traulles $=\frac{\pi}{2}+0.411 \mathrm{~J}=1.98$ rads
$\omega=\frac{\Delta \theta}{\Delta t}$ $\Delta t=\frac{\Delta \theta}{\omega} \quad \frac{1.98}{31.62}$
0.0627 s
$0.063 \mathrm{~s}(25.1)$

(d) Tanya notices that once she has pulled the toy on the spring by 0.100 m and set it oscillating in simple harmonic motion with a period of $T=0.199 \mathrm{~s}$, the amplitude gradually decreases with time, and eventually the toy on the spring stops oscillating.

- State the name of this phenomenon, and explain what causes a decrease in amplitude.
- Using the axes below, draw a graph of amplitude against time for three complete oscillations.
- Label axes with physical quantities, units, and values.

This is called damping, can occurs when a friction force causes energy to be removed for the system. the decreeing the amplituste of oscillation exponentially over time. (Less Eh is trowforder to G_{p}, rrecning a smaller displacement)

SPARE DIAGRAMS

If you need to redraw your response to Question One (a), use the diagram below. Make sure it is clear which answer you want marked.

If you need to redraw your response to Question One (c), use the diagram below. Make sure it is clear which answer you want marked.

If you need to redraw your response to Question Three (c), use the axes below. Make sure it is clear which answer you want marked.

If you need to redraw your response to Question Three (d), use the axes below. Make sure it is clear which answer you want marked.

Extra space if required. Write the question number(s) if applicable.

Extra space if required.
Write the question number(s) if applicable.

Standard	91524	Total score 23
Q	Grade score	Marker commentary
1	E7	a. Labels force correctly. b. Calculates angle correctly. c. Recognises a net force is required for circular motion and correctly identifies the direction of the net force. Mistakes tension force for support force when relating forces to the sensation of weight. d. Correctly completes multi-step calculation to include velocity at the bottom of the loop.
2	E8	a. Correctly identifies energy transformations. b. Correctly completes multi-step calculation to determine inertia. c. Can relate mass distribution to axis of rotation and so the inertia of the object. Can appropriately apply conservation of angular momentum to the situation to explain the change in angular velocity. d. Correctly completes multi-step calculation to determine number of revolutions completed.
3	E8	a. Can interpret the graph and recognises that angular frequency and frequency are related. b. Recognises there are two parts to the question and answers both correctly. c. Uses the reference circle to determine t. d. Can explain damping in terms of energy loss due to friction. Is able to produce a labelled graph, cosine graph was too far below the line for excellence.

