No part of the candidate's evidence in this exemplar material may be presented in an external assessment for the purpose of gaining an NZQA gualification or award.

+

91164

if you have NOT written in this booklet

Mana Tohu Mātauranga o Aotearoa New Zealand Qualifications Authority

Level 2 Chemistry 2024

91164 Demonstrate understanding of bonding, structure, properties and energy changes

Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of bonding, structure, properties and energy changes.	Demonstrate in-depth understanding of bonding, structure, properties and energy changes.	Demonstrate comprehensive understanding of bonding, structure, properties and energy changes.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table and other reference material are provided in the Resource Booklet L2–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2–16 in the correct order and that none of these pages is blank.

Do not write in any cross-hatched area (2/2/2). This area will be cut off when the booklet is marked.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Achievement

© New Zealand Qualifications Authority, 2024. All rights reserved.

No part of this publication may be reproduced by any means without the prior permission of the New Zealand Qualifications Authority.

QUESTION ONE

(a) Draw the Lewis structure for each of the two blank molecules, and name their shapes.

Molecule	NI ₃ (nitrogen triiodide)	H ₂ S (hydrogen sulfide)	CS ₂ (carbon disulfide)
Lewis structure	I-N-I	н-ё-н	€: <u>5</u> -6- <u>5</u> :
Name of shape	Tetrahedral	bent	linear
Approximate bond angle around central atom	109.5°	109.5°	180°

2

(b) Compare and contrast the shapes and bond angles of silicon tetrahydride, SiH₄, and azanone, HNO.

Molecule	SIH ₄ (silicon tetrahydride)	HNO (azanone)	
Lewis structure	H H-Si-H H	H−Ň=Ö	

Tetrahydride is has a parent geometry of Tetrahedral and bouch angle of 109.5. This are 4 bonding pairs and no love points meaning the moleular geometry is also Tetrahudrel. Azanone has a parent geometry at linear and band augh at 160. However as the Nitron atom has a bon pair, it repels the bonding pair for minimal reput according to the NOS WER VESPR theory. This state that the Valunce electrone of a molecule will repel as maximum disting to minimums. the

Chemistry 91164, 2024

00702

4

Hydr	rogen sul	fide, H ₂ S same po	S, and blarity.	hydro	gen cyanide,	HCN	I, molecules ł	ave a	differe	ent shap	e, but tl
The	Lewis str	ucture o	f both	of the	se molecules	are s	hown below:				
	hydro	gen sulf	ide	H-	- Ŝ-Н						
	hydro	ogen cya	nide	(H-	C≡N:						
					identifica ti	a nal	arity of both	U S an	dHC	N	
	Cinala ti	ha mand	halarr		1 1/1/3/11/11/30 11	ie noi	arity of both	H_2S an	Id HC.	N.	
(i)	Circle th	he word	below	which	r identifies u	ie por					
(i)	Circle the	he word	below	which	Non-pola	r					
(i) (ii)	Circle the	olar your cho	below ice of	polari	Non-pola	r 					
(i) (ii)	Circle the	olar olar your cho splaining lating th	ice of the lines to here the second	polari nks be ow the	Non-pola ty by: etween the bo	r onding a mol	g and structur	e of ea	ch sut	ostance,	and
(i) (ii)	Circle the	olar your cho plaining lating th	ice of the lines to h	polari nks be ow the	Non-pola ty by: etween the bo polarity of	r onding a mol	g and structur ecule is deter	e of ea mined	ch sul	ostance,	and
(i) (ii)	Circle the Justify y • ex • re	vour cho plaining lating th	ice of the line is to h	polarin nks be ow the	Non-pola ty by: etween the bo e polarity of woltcom	r onding a mol	g and structur ecule is deter defroyind	e of ea mined	ch sub	lom	and
(i) (ii)	Circle the	vour cho splaining lating th	below ice of the line is to here is to here it is to here	polarin nks be ow the	Non-pola ty by: etween the bo e polarity of woolcom	r onding a mol	g and structur ecule is deter detrowind	e of ea mined	ch sub	lom	and
(i) (ii)	Circle the second secon	vour cho plaining lating th	below ice of the line is to help $\int_{-\infty}^{\infty} dt$	polarin nks be ow the	Non-pola ty by: etween the bo e polarity of woltcom	r onding a mol	g and structur ecule is deter detroind	e of ea mined	ch sub	lom	and
(i) (ii)	Circle the second secon	vour cho plaining lating th	below ice of the linis to here $\frac{1}{2}$	polarin nks be ow the	Non-pola ty by: etween the bo polarity of woltcom	r onding a mol	g and structur ecule is deter defruind	e of ea mined	th	lom	and pairs
(i) (ii)	Circle the second secon	vour cho plaining lating th	below ice of f , the line is to here f .	polarin nks be ow the	Non-pola ty by: etween the bo e polarity of the wrolecom	r onding a mol	g and structur ecule is deter detroind	e of ea mined	ch sub	lom	and poirs
(i) (ii)	Circle the Justify y • ex • re	he word olar your cho splaining lating th	ice of the line is to he	polarin nks be ow the	Non-pola ty by: tween the bo e polarity of the woolecom	r onding a mol	g and structur ecule is deter detrowind	e of ea mined	th	lom	and poirs
(i) (ii)	Circle the second secon	he word olar your cho cplaining lating th	ice of the line is to he	the	Non-pola ty by: atween the bo polarity of woltcoh	r onding a mol	g and structur ecule is deter detroind	e of ea mined	th	ostance,	and poors
(i) (ii)	Circle the second secon	he word olar your cho cplaining lating th	ice of the linis to h	micr polarin nks be ow the	Non-pola ty by: etween the bo polarity of woltcub	r onding a mol	g and structur ecule is deter detrunind	e of ea mined	th	lom	and pairs

Chemistry 91164, 2024

(d) Methanamine, CH₃NH₂, is used widely in the production of pharmaceuticals, fungicides, insecticides, cleaning agents, and in the fabric industry.

Although hydrogen cyanide, HCN, is highly poisonous, it can be used to produce methanamine, as shown in the reaction below.

$$HCN(g) + 2H_2(g) \rightarrow CH_3NH_2(g) \quad \Delta_r H = -158 \text{ kJ mol}^{-1}$$

(i) Calculate the mass of methanamine formed when 1890 kJ of energy is released.

$$M(CH_{3}NH_{2}) = 31.0 \text{ g mol}^{-1}$$

 $n = m_{M} - m_{0} + m_{0} +$

(ii) Choose the correct energy diagram that represents the reaction above and label it with the information provided in the equation.

QUESTION TWO

Solid	Melting point (°C)	Type of solid	Type of particle	Attractive forces between particles
SiO ₂ (s) (silicon dioxide)	1700	Covalent Netroik solrd	Atoms	Contint bonds
$SiCl_4(s)$ (silicon tetrachloride)	-69?	Mohurlur solru	Moleculas	Internotiva for
CuCl ₂ (s) (copper (II) chloride)	620	Moluchar Solid	Molecules	Intermolecular to
Al(s) (aluminium)	660	Mutalic solid	Atoms	Mutalic bonds

(a) Complete the table below for each substance in their solid state.

(b) Both SiO_2 and $SiCl_4$ contain silicon, but $SiCl_4$ has a considerably lower melting point.

Explain why there is a difference in melting point for these substances.

made up of atoms and hild SiO2 is a povalent Nitmork Solid together by cardent bonds. These bonds on structured in a 3 d lattice shape which means each stort is bounded to other atoms in the network. These bonds an very strong and require bots of energy to overcome, which is why is has a very high melting point. Sidy is a molecular solid mach up of molecules held together by weak internetector bonds. This bonds require little energy to overone 70 the bonds will beady between nodentry nothing the theston it has a low melting point.

Chemistry 91164, 2024

(c) Explain why silicon tetrachloride, SiCl₄, does not dissolve in water, but copper(II) chloride,
 CuCl₂, does.
 Interpolar
 Polar

6

- Polos
- link to their structure and bonding

In your answer:

- include the type of solvent that SiCl₄ will dissolve in, and why
- include a diagram to support your answer for CuCl₂.

Silicon titraditorich is a non-polar molecule. When put in water it does not dissolv as the forces forces between inductes is not great through greater than the occas set attraction tons between substances. This means that the bound between forces between indecides in Siel & greater than the keeps the indecides together so that they do not dissolve. This is because water is a polar molecule and sseed Siel is non-polar, this they do not overcome the bonds between particles to dissolve and form bonds with eachother:

When dissolving Lopper chlorich in water the forces between particle is orrecome to form bonds with water. This is because both H,0 and wel are polar, meaning thy can form bonds and wel Can dissola.

Chemistry 91164, 2024

QUESTION THREE

Bottled gas supply in New Zealand is a <u>60%</u> propane, C_3H_8 , and <u>40%</u> butane, C_4H_{10} , mix. The combustion reactions for both propane and butane fuels are given below.

- (a) Show by calculation how much more energy is released per 1.00 kg of propane compared to 1.00 kg of butane.
 - (i) Energy released by 1.00 kg of propane combustion

 $C_{3}H_{g}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$ M = 1.000 O.6 ₹ × 72.67 44.1

M= n= 22.67

m=

(ii) Energy released by $\underline{1.00 \text{ kg}}$ of butane combustion $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$

 $\Delta_{\rm r} H = -2877 \text{ kJ mol}^{-1}$ $M(C_4 H_{10}) = 58.1 \text{ g mol}^{-1}$

 $\Delta_{\rm r} H = -2044 \text{ kJ mol}^{-1}$

 $M(C_3H_8) = 44.1 \text{ g mol}^{-1}$

(iii) Calculate how much more energy is released by 1.00 kg of propane than 1.00 kg of butane.

Chemistry 91164, 2024

(b) The reaction of a hydrogen fuel cell is shown below. Hydrogen reacts with oxygen to produce water.

ч

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \qquad \Delta_r H = -484 \text{ kJ mol}^{-1}$$

$$H - H \qquad O = O \qquad (H - O - H)$$

$$U \qquad O \qquad U \qquad O \qquad U = O$$

02

Use the bond energies listed in the table, and the change in enthalpy $(-484 \text{ kJ mol}^{-1})$ provided for the reaction, to calculate the <u>average</u> bond energy of the <u>O-H</u> bond.

H₂O

Bond	Bond energy (kJ mol ⁻¹)
H-H	436
0=0	498

 H_2

Z(U36)+ 498 - + 4x	Average be	and energy is	0463.5 kjw
451 1370 - 4 J	0		
-usu			
T t			
thri = more			
· +1181			
1370 + UBM = 185M			
1854= 41			
463.s = X			
		Question T on the	hree continues next page.

- (c) 'Galvorn' is a newly developed form of carbon that is strong, light, and has good conductivity. With its clean manufacturing process and wide range of applications, it is anticipated that Galvorn could reduce the reliance on standard metals that are energy intensive to produce.
 - (i) As with graphite, Galvorn conducts electricity.

What requirement must Galvorn have to allow it to conduct electricity?

decolised free moving electrons that can conduct the averant.

(ii) Aluminium, Al, is also a good conductor of electricity, and it is malleable (can be pressed into shapes). These properties enable it to be used extensively in overhead power lines and for components and shells in smartphones and laptops.

Explain why aluminium, Al, has these properties, and link it to the uses stated. Refer to its structure and bonding.

Conducts electricity: Alvormon is a metalic solid made up from atoms hald together by non-directional metalic bonds. This disrupting the bonds , but allowing it to be malliable. Aluminium is able to the conduct electricity of it has debudsed elutrons (sea at electrons, that an free moving and allent electrical Conductivity. Chemistry 91164, 2024 00702

Malleable: Aluminium is a metalic solid total together by non-directional made up tran atoms held together by non-directional metalic bonds. This boards attain non-directional bonds, allows atoms to slich past eachother without disrupting the bonds, but allowing it to be malleable. This is why it is used in electrical components and powerlines.

· Aluminium has a 2d lattice shape

Achievement

Subject: Chemistry

Standard: 91164

Total score: 10

Q	Grade score	Marker commentary
One	A3	The candidate was awarded A3 as they recognised the bond angle for a particular shape, identified polarity of molecules without giving the reason and were able to identify and label the energy change for an exothermic reaction on an enthalpy diagram.
Two	A4	The candidate was awarded A4 as they were able to state the particle type and attractive forces for most solids, explained the difference between the melting point of two solids linking their particle type and strength of forces and recognised that polarity was the reason for the solubility of an ionic and a non-polar substance in water.
Three	A3	The candidate was awarded A3 as they correctly calculated one step from the calculation in part a, calculated the bond energy of a missing bond in part b but failed to round and give units and were able to only give a vague description of metallic bonding in part c.