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QUESTION ONE

(a) Differentiate f(x)= (4 ~9x* )

You do not need to simplify vour answer.

'/
£00=(a-ax) "
Flg=- o ® Jox

(b) A curve is defined by the equation y = (x? + 3x + 2)sinx.

Find the gradient of the tangent to this curve when x = 0.

You must use calculus and show any derivatives that you need to find when solving this problem.

_‘{? T Cosx (&stn) + Sinx (2)‘%3) | e )‘143><+2
&k i, o . . . “‘2x+3
\[ Sinx
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(¢) For the function below, find the range of values of x for which the function is decreasing.
g
y=3(2x-7?+60lnx+12, x>0

You must use calculus and show any derivatives that you needo find when solving this problem.
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2 L3
(e) A curve is defined by the equation y= m@, where x > 0.
X

The curve has a point of inflection at the point P.
Find the equation of the tangent to the curve at the point P.

You must use calculus and show any derivatives that you need to find when solving this problem.
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QUESTION TWO

(a)

(b)

A function is defined parametrically by the pair of equations:

x=3£+1andy=cost. e ==l

Find an expression for % .

é_i\ — _Q_?-Qﬂ*‘
d4 i1

49 = _an}

An object is travelling in a straight line. Its displacement, in metres, is given by the formula
s(f) = In(3F + 5¢ + 2), where ¢ > 0 and ¢ is time, in seconds. < U e

Find the velocity of this object when ¢ = 1 second.

You must use calculus and show any derivatives that you need to find when solving this problem.
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(d) Consider the function f(x)= i—“;’i x>0.

Find the coordinates of the point of inflection on the graph of the function.
You can assume that your point found is actually a point of inflection.

You must use calculus and show any derivatives that you need to find when solving this problem.
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() The graph of the function y= zxe

, where £ is a non-zero constant, has a single turning point
at Q. x+k

Find the x-coordinate of the point Q.
You must use calculus and show any derivatives that you need to find when solving this problem.
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QUESTION THREE
- ‘/ ’—r & 5
(a) Differentiate y=1x. sec(6x). U_oalx Yo
You do not need to simplify your answer. V= 6

I
V = ésec.k"rqﬂx

L _ 3 (6sectany) 4 0.5x7 (Secex)
12

(b) The graph below shows the function y = f(x).

ay

(i) For the function above, find the value(s) of x where f(x) is continuous but not
differentiable.

(ii) For the function above, find the value(s) of x where f'(x) = 0.
*=l X73, Xe§

(iii) What s the value of lim f(x)?
X——

State clearly if the value does not exist.
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(x-a) (x-1)

‘ch‘) ()( va) (x4 I) 2
(¢) Find the x-value(s) of any stationary point(s) on the graph of the function f(x)= fi___.ssx%
X +5x+

You must use calculus and show any derivatives that you need to find when solving this problem.

You do not need to determine the nature of any stationary poini(s) found.
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(d) Jamie is doing some baking and pouring "

the flour to form a conical pile. Innis poscing Hove "

The height of the plle is always 1 tTl“e .

as the diameter of the base of the cone 4

:

If the flour is being added at a constant ‘ =

rate of 3 cm’ per second, at what rate is " -

the height increasing when the pile is h £

4 cm in height? ; o

i e

i ]

You.mu.-st use calculus and show any < S kol i £

derivatives that you need to find when nlffoto/man-gielen-bloem-uit- i

solving this problem. de-kom-van-de-maatregel-
. gm825182090-133804287

Note that volume of a cone = %mzh. L\ - _2 r
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Subject:

Standard:

Calculus

91578

Total score: 9

Achievement

Q

Grade
score

Marker commentary

One

A3

This question provides evidence for A3 because the candidate
differentiated a trigonometric function involving the product rule.
They also used the product rule to successfully differentiate
exponential function. This candidate did not achieve an A4
because they did not differentiate a polynomial or radical function
with the chain rule.

Two

A4

This question provides evidence for A4 because the candidate
differentiated a variety of functions, which involved the use of the
chain rule and quotient rule. The functions correctly differentiated
involved parametric, trigonometric and natural log functions. This
candidate did not achieve an M5 because they did not find the y-
coordinate of the point of inflection.

Three

N2

This question provides evidence for N2 because the candidate
demonstrated an ability to differentiate a polynomial function using
the quotient rule. This candidate did not get A3 as they did not
apply the product rule to differentiate a trigonometric function.
They also did not identify the features of a piecewise function.






