No part of the candidate's evidence in this exemplar material may be presented in an external assessment for the purpose of gaining an NZQA qualification or award.

SUPERVISOR'S USE ONLY

91579

+

Mana Tohu Mātauranga o Aotearoa New Zealand Qualifications Authority

Level 3 Calculus 2024

91579 Apply integration methods in solving problems

Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Apply integration methods in solving problems.	Apply integration methods, using relational thinking, in solving problems.	Apply integration methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have the Formulae and Tables Booklet L3–CALCF.

Show ALL working.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2–16 in the correct order and that none of these pages is blank.

Do not write in any cross-hatched area (<//>
(<//>
//.). This area will be cut off when the booklet is marked.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

© New Zealand Qualifications Authority, 2024. All rights reserved.

No part of this publication may be reproduced by any means without the prior permission of the New Zealand Qualifications Authority.

QUESTION ONE

- (a) Find $\int 6 \sec(2x) \tan(2x) dx$. 3 Sec(2∞) + c
- (b) The graph below shows the function $y = 40x(5x^2-3)^3$.

Find the shaded area.

You must use calculus and show the results of any integration needed to solve the problem.

2

Calculus 91579, 2024

An object's velocity can be modelled by the equation $v(t) = 26.4\sqrt[3]{t}$, $\Rightarrow 26.4 \neq 1/3$ (c) where v is the velocity of the object in m s^{-1} , and t is the time in seconds since the start of timing.

Initially, the object was 360 metres from a point P. Calculate the distance that this object has travelled from the point P when it has reached a velocity of 264 m s⁻¹. You must use calculus and show the results of any integration needed to solve the problem. $V'(t) = 19.8 t^{4/3} + c$ d(0) = 36019.8 (0) + C = 360 C= 360 $d(E) = 19.8 E^{4/3} + 360$ when V=264 mor E= E 113 264 = 26.4 E48 = 10 E= 1000 d(1000) = 19.8 (1000) 113 + 360 d (1000) = 198360m 19360n From point p

4 Consider the differential equation $\frac{dy}{dx} = 24\cos(3x)\sin(x)$. Given that y = 6 when $x = \frac{\pi}{3}$, find the value(s) of y when $x = \frac{\pi}{2}$. You must use calculus and show the results of any integration needed to solve the problem. $= 12 \sin(4x) + 12 \sin(2x)$ $Y = -3\cos(4\pi) - 6\cos(2\pi) + C$ $= -3\cos(4x\frac{1}{3}) - 6\cos(2x\frac{1}{3}) + ($ 21 or 10.5 $-3\cos(4x)-6\cos(2x)$ $+\chi=15$ y=+ 10.5 $= -3\cos\left(4 \times \frac{\pi}{2}\right) - 6\cos\left(2 \times \frac{\pi}{2}\right) + 10.5$ -3 - 6 + 16,5 = 4:

(d)

5 The graph below shows the curves $y = 3 \sec^2 x$ and $y = 2 \tan^2 x$. (e) $g(x) = 2 \tan^{2}x$ $y = 2 \tan^{2}x$ $ton 2x = \frac{2 \tan x}{1 - \tan^{2}x}$ 7 2=1 of (x) = 35ec 35c $y = 3 \sec^2 x$ (1-ton 221)(ton221) = 2ton 72=0 $y = 1 - \tan 2x = \frac{2 \tan x}{\tan 2x} + \tan 2x = \frac{1 - \tan 2x}{\tan 2x} + \tan 2x = \frac{1 - x}{\tan 2x} + \tan 2x = \frac{1 - x}{\tan 2x} + \tan 2x = \frac{1 - x}{2 - 4 \tan 2x} + \tan 2x = \frac{1 - x}{2$ g(2)=2sec2-2 Find the area of the shaded region enclosed by the two curves, x = 1, and the y-axis. You must use calculus and show the results of any integration needed to solve the problem. $Sg(x) = 2 \tan x - 2x$ Jfor) = 3tanoc area under fax) [3ton 2] (3ton 1) - (3ton 0) = area area = 4.67 unit2 area unter g(x) 2tanx - 2x] (2tanz - 2) - (2tano - 0) area = 1.11 unit² area in grey = area Far - area good area in grey = 3.5574 unst² $area = 3.56 \text{ unit}^2$ Calculus 91579, 2024 10345

Calculus 91579, 2024

QUESTION TWO (a) Find $\int (3x^4 + 4)^2 dx$. (3x++++)(3x+ = 9x8 + 24x4 + 16

6

4.8x5 16x 1 4 =

(b) Find the value of k, given that $\int_{k}^{16} 3\sqrt{x} \, dx = 112$. You must use calculus and show the results of any integration needed to solve the problem.

7 12 4-2 Consider the differential equation $\frac{dy}{dx} = 12y^2e^{3x}$. (c) Given that y = 0.5 when x = 0, find the value of y when $x = \frac{1}{3}$. You must use calculus and show the results of any integration needed to solve the problem. e 3x x dx $e^{3\alpha}$ + C ezz e 32 x 124 - 3 = + C - 3 e³²L Y = -4e3x 1 1,0) -1 + c = .0.75Ae372 + 0.75 $\frac{1}{4e^{3(\frac{1}{3})}}$ + 0.75 0.658 or 13, 0.658

The graph below shows part of the graph of the function $y = \sin^2 x$. $x = -\frac{\pi}{2}$ $\frac{\pi}{2}$ x =y = 1 $y = \sin^2 x$ For goal Find the shaded area enclosed between the lines $y = \sin^2 x$, y = 1, $x = -\frac{\pi}{2}$, $x = \frac{\pi}{2}$. You must use calculus and show the results of any integration needed to solve the problem. Q(x) = g(x) - F(x) $Q(x) = 1 - 5in^2 x$ $Q(x) = 1 - (-\frac{1}{2}(\cos 2\alpha - 1))$ Q(x) = 1+ 1/2 ((0)2x-1) Q(2)= 1+ 2 cos Zn - 12 QUX) = x + ASin 22 - 22 $Q(\chi) = \frac{1}{2}\chi + \frac{1}{4}sin2\alpha$ 主文+ ま Sin 20c 玉)+ えいれて(玉))-(え(玉)+ 大いり cnit 2 arca = TT

(d)

Calculus 91579, 2024

10345

シンシン

(e) The mass, M, of a spherical object, with radius p, can be approximated by

$$M = \int_0^p 4\pi r^2 \frac{a}{\left(1 + br^3\right)} \mathrm{d}r$$

where a, b, and p are all positive constants.

Using this formula, find an expression for the mass, M, of a spherical object, giving your answer in terms of a, b, p, and π .

41112 DF du 9 1+br3 0

10 **QUESTION THREE** (a) Find $\int \left(e^{2x} + \frac{3}{e^{4x}} \right) dx$.

(b) Solve the differential equation $\frac{dy}{dx} = \frac{5}{4x-3}$, given that y = 10 when x = 1. You must use calculus and show the results of any integration needed to solve the problem.

Calculus 91579, 2024

11 (c) Find the value of *m*, given that $\int_{-1}^{m} \left(\frac{4x+5}{2x+3}\right) dx = 2m.$ 2(2x+3)-122+3 2xt 3 M La 12x + 31 2m = -1 (2m - 2n(2m + 31) - (-2 - 2n1)) = 2m- 20/2m+3/+2=2m $e^2 = 2m + 3$ = 2.19] 2 = 2n |2m + 3|3 m Question Three continues on the next page. Calculus 91579, 2024 10345

T. W.

Calculus 91579, 2024

(e) A teacher makes a cup of coffee at the start of interval. The teacher leaves the cup of coffee in the staff room where the temperature is 18 °C.

After 30 minutes, the temperature of the cup of coffee is 50 °C, but the teacher believes that the coffee is still too hot to drink.

When the teacher returns again, after a further one hour, the cup of coffee has cooled down to a temperature of 30 °C. $\leftarrow -90$

The rate at which the temperature of the cup of coffee changes at any instant is proportional to the difference between the temperature of the cup of coffee, *N*, and the temperature of the room.

Write a differential equation that models this situation, and then solve it to calculate the temperature of the cup of coffee when it was made.

You must use calculus and show the results of any integration needed to solve the problem.

dTo & (TN - Tr) T= U = WT 26 $dT_{W} = r(T_{W} - T_{r})$ Tr = 18 de $\frac{1}{T-T_v} \times dT = \int r \times dt$ La[T-Tr] = rE + ct - Tr = Aere T-18 = Aere $18 = Ae^{120}$ 32 = Ae $18 = Ae^{90 \times r}$ 12 = Ae $50 - 18 = Ae^{r \times 30}$ $= e^{30r}$ 30r = 20 (32 $12 = Ae^{40x} \frac{h(32)}{30}$ $12 = Ae^{3h(32)}$ $2n\left(\frac{32}{4}\right)$ 30 e 310 (32) $L_{n}(\frac{12}{A}) = 3 l_{n}(\frac{32}{A})$ $A = 52.25578 \qquad F = -0.016347 \\ T - 18 = 52.3e^{-0.01634} \qquad Ct$ $Cit \in = 0$ T - (8 = 52.3e^{-0.0163(0)} inital temp = 70.3°C Calculus 91579, 2024 10345

Excellence

Subject: Calculus

Standard: 91579

Total score: 21

Q	Grade score	Marker commentary	
One	E8	Candidate correctly calculated the area between two curves by using a trigonometric identity and then integrating this expression. Candidate showed their working in a clear, correct logical manner.	
Two	M5	Candidate calculated the area between a line and a curve by correctly using a trigonometric identity, and then integrating this expression correctly.	
Three	E8	Candidate successfully formed and solved a differential equation from a written expression. They then used this expression to solve a problem using correct mathematical working.	