Assessment Schedule

Physics: Demonstrate understanding of electrical systems (91526)

Evidence Statement

Achievement	Achievement with Merit	Achievement with Excellence	
<i>Demonstrate understanding</i> requires writing statements that	<i>Demonstrate in-depth understanding</i> requires writing	<i>Demonstrate comprehensive understanding</i> requires	
typically show an awareness of how simple facets of	statements that will typically give reasons why phenomena,	writing statements that will typically give reasons why	
phenomena, concepts or principles relate to a described	concepts or principles relate to given situations. For	phenomena, concepts or principles relate to given	
situation. For mathematical solutions, relevant concepts will	mathematical solutions the information may not be directly	situations. Statements will demonstrate understanding of	
be transparent, methods will be straightforward.	usable or immediately obvious.	connections between concepts.	

Evidence Statement

 $\mathbf{N}\mathbf{\emptyset} = \mathbf{N}\mathbf{o}$ response; no relevant evidence.

Q1	Not Achieved	Achievement	Achievement with Merit	Excellence
(a)	$Q = VC = 12 \times 125 \times 10^{-6} = 1.5 \times 10^{-3} \text{ C}$	• Correct answer 1.5 × 10 ⁻³ C OR 0.0015 C.		
(b)	Resistance is very small, so current is very large. Resistance is small and the capacitance is also very small./ Time constant is very small 5τ is small.	• Correct explanation.	Some indication to tell that 5τ is small.	
(c)	$ \begin{array}{c} charge (\times 10^{-3} \text{ C}) \\ 1.5 \\ 0.5 \\ 0.5 \\ 1.6 \\ 1$	 Exponential decay (approx) ignore time axis labels + one of the following: decay starts from the value 1.5 × 10⁻³C. The line shows 63% drop correctly. Time constant = 0.016s calculated. 	 Achievement plus at least 2 other plots shown from 0.555, 0.2, 0.08, 0.03. Time axis should have correct values 	

(d)	The lamp will be at or above across it is at, or above, the v When $V = 9.0$ V, $Q = 9.0 \times 1$ Reading from the graph: when $Q = 1.125 \times 10^{-3}$ C $t =$	its normal brightness if the voltage voltage of the lamp. $25 \times 10^{-6} = 1.125 \times 10^{-3} \text{ C}$ $= 16 \times 10^{-3} \times \frac{3.5}{10} = 0.0056 \text{ s}$	 Correct charge calculated 1.125 × 10⁻³ C OR Correct time scale used for part (c) 		 TWO of: Correct charge and Correct time scale used for part (c) If the time axis is incorrect, but time is consequently calculated correctly. 		Correct Time Accept .0030 $-$.0064 s OR If the only error is the incorrect time constant used for <i>x</i> -axis scale, but time is consequently calculated correctly Accept range 0.00004 $-$ 0.00009 s.	
(e)	(e) $\frac{1}{C_{\text{tot}}} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow C_{\text{tot}} = \frac{125 \times 10^{-6}}{2}$ $= 62.5 \times 10^{-6} = 63 \mu\text{F}$		Correct answWorking mu	wer. 1st be shown.				
/mj(f)	(f) The time constant is reduced because the capacitance of the circuit is less ($\tau = RC$). Less charge is stored on the plates of each capacitor ($Q = CV$). Less charge can flow off the plates of the capacitors more quickly.		• $\tau = RC$ so lo C .	ower $ au$ because lower				
Q1	N1	N2	A3	A4	М5	M6	E7	E8

Q2	Not Achieved	Achievement	Achievement with Merit	Excellence
(a)	$E = \frac{1}{2}LI^2 = 0.5 \times 0.510 \times 1.70^2 = 0.73695 = 0.737 \text{ J}$	• Correct answer 0.737 (J) .		
(b)	$V = Ir \Rightarrow r = \frac{120}{1.70} = 70.588 = 70.6 \Omega$ (<i>r</i> ishe internal resistance of the inductor). The maximum current is inversely proportional to <i>r</i> .	• Correct value 70.6 Ω. Correct explanation.		
(c)	 When the switch is closed the current starts to increase from zero, and so there is increasing flux in the coil. The emf induced by the changing flux will oppose the changing current making it take longer to build up to its maximum value. 	• ONE correct statement. OR • Greater the inductance, the longer the time for the current to reach the max value. (T is directly proportional to L ($\tau = \frac{L}{R}$),	Both correct statements.	
(d)	Nothing because the gap AB is effectively on open switch so nothing changes.	• Nothing.	 Nothing. Because the gap acts as an open switch / circuit. Do not accept being in parallel as a reason. 	

(e)	When switch 1 is opened. the zero and while it is changing inductor. Because there is no induced voltage is no longer battery so the rate of change voltage, depends on the time is effectively a huge resistant so the rate of change of curre very high – high enough to p	e current in the circuit will drop to a voltage is induced in the longer a battery in the circuit, the limited by the voltage of the of current, and hence induced constant of the circuit. As the gap ce the time constant is very small ent and hence induced voltage is roduce a spark.	 wit will drop to ed in the the circuit, the age of the circuit, the age of the ce induced cuit. As the gap t is very small ed voltage is CR Large induced voltage across inductor linked to change in current when switch 1 is opened. OR Current dies very quickly. OR Energy stored in the inductor is released. 		 Large induce across inducto rapid change when switch 1 AND Due to very sh (constant). OR The Kirchoff? not apply due being open. OR The Induced v exceed the bat due to the ope 	d voltage or linked to in current is opened. nort time s law does to swtich roltage can tery voltage n switch.	 Explanation shows complete understanding that opening the switch will produce a very high induced voltage because the rate of change of current will be very high. because the time constant will be very small. because the resistance will be very big. 	
	N1	N2	A3	A4	M5	M6	E7	E8
Q2	ONE point	TWO point	THREE points	FOUR points	1m + 3a	2m + 2a	1e + 1m + 2a	1e + 2m + 1a

θ	€{3 ₽	Not Achieved	Achievement	Achievement with Merit	Excellence
	(a)	$X_{c} = \frac{1}{\omega C} = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 450 \times 15.0 \times 10^{-6}}$ $= 23.58 = 24 \Omega$	• Correct answer.		
	(b)	The current is in phase with the resistance and the supply voltage is in phase with the impedance. $\theta = \cos^{-1} \frac{55}{93} = 53.74$ Current lags the supply voltage by 54° or 0.94 rad.	 Recognition that voltage phase difference is the same as impedance phase difference. OR θ is labelled correctly in the diagram 	• Correct answer. 54° or 0.89 rad	
	(c)	$X_{\text{tot}} = X_{\text{L}} - X_{\text{C}}$ $Z^{2} = X_{\text{tot}}^{2} + R^{2} \Rightarrow X_{\text{tot}} = \sqrt{Z^{2} - R^{2}}$ $\Rightarrow X_{\text{tot}} = \sqrt{93^{2} - 55^{2}} = 74.99 \Omega$ $\Rightarrow X_{\text{L}} = 74.99 + 23.58 = 98.57 = 99 \Omega$	 Correct X_{tot}. 75Ω OR If the value of XL is substituted as 98.6 and then te Z is calculated as 93 Ω. 	Correct answer 99 Ω.	
	(d)	To bring the circuit to resonance, the frequency must be changed to make the two reactances equal in value. X_L is directly proportional to f and X_C is inversely proportional to f so changing the frequency will increase one but decrease the other. $X_L > X_C$ and so to decrease X_L and increase X_C , frequency must be decreased .	 Recognition that the frequency has to be decreased to make the X_c = X_L. OR Recognition that the frequency has to be decreased, as by decreasing <i>f</i>, the X_L decreases and X_C increases. 	Achievement + • By decreasing <i>f</i> , the X _L decreases and X _C increases.	

93 Ω

(e)	$220 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{L \times 15}}$ L = 0.0350 H	.0×10 ⁻⁶	Correct answer.	0.0350Н.				
(f)	(f) When the circuit is in resonance, the current is greatest because the reactance is zero and so the impedance is smallest. When the current is greatest the sound from the speaker is loudest. The current decreases rapidly either side of resonance because the reactance increases either side of resonance. So if the frequency is reduced quickly through the resonant frequency and down below it, there will be a brief surge of current and so a brief burst of sound.		 Recognition that the max sound happens at resonance. OR Recognition that the frequency must be changed down through the resonant frequency. OR Current-frequency diagram. 		 Achievement. AND Maximum cur explained. 	rrent at resonance	• Full explanation greatest sound t current and zero impedance = <i>R</i> Rapid decline in side of resonand bringing the fre through the reso	a linking o maximum o reactance / at resonance o current either ce requires quency quickly onant frequency.
03	N1	N2	A3	A4	M5	M6	E7	E8
	ONE point	TWO points	THREE points	FOUR points	1m + 3a	2m + 2a	1e + 1m + 2a	1e + 2m + 1a

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 6	7 – 13	14 – 18	19 – 24