Assessment Schedule – 2020 Mathematics and Statistics: Investigate relationships between tables, equations and graphs (91028)

Evidence

Q ONE	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	y = -3x + 10 or equivalent.	Correct equation.		
(b) (i)	t = 0 so $S = $50(Units not required.)$	Correct answer.		
(b) (ii)	S = 50 + 40t Accept if equation is given as y = 40x + 50	Rate of change / Gradient (40) identified in a linear equation. OR Constant / y-intercept (50) identified in a linear equation.	Correct equation for Bahman's savings plan.	
(b) (iii)	$S = 100 \times 1.1^{t}$ Accept if equation is given as $y = 100 \times 1.1^{x}$ Accept: $y = 110(1.1)^{(x-1)}$	Value of 100 identified in an exponential equation. OR Value of 1.1 identified in an exponential equation.	Correct equation for Cael's savings plan.	
(b) (iv)	 Graph of Anaru's Saving Plan produced. Graph of Cael's Saving Plan produced. Table of Anaru, Cael and Deli produced. Comparison comments made. Samples comments are: Cael starts with the most money (\$100) compared to the others, who start with only \$50 and \$80. After approx. 0.625 years, Anaru and Deli have the same amount (approx. \$59) but Cael has more, with \$106. After approx. 4.1 years, Anaru and Cael have the same amount (approx. \$147), but Deli has only \$84. After approx. 5.6 years, Cael and Deli have the same amount (approx. \$147), but Anaru has more with approx. \$217. As time goes on, Anaru and Deli have almost the same amount, whilst Cael will lag further behind. Where the candidate has used their graph for their values, the values found can be accepted as less accurate. 	A complete table and / or a graph with all three plans (if no comments given) OR ONE valid comparison comment regarding values of savings plans WITH supporting evidence of: ONE of: • relevant table of values constructed with at least THREE correct values • relevant graph attempted. Allow consistency for incorrect equation for Cael from (b)(iii) if exponential equation.	A complete table and graphs with one valid comparison comment OR TWO valid comparison comments regarding values of savings plans WITH supporting evidence of: ONE of: • relevant table of values constructed with at least THREE correct values • relevant graphs drawn. Allow consistency for incorrect equation for Cael from (b)(iii) if exponential equation.	Correct and clear representation of the situation AND TWO valid comparison comments regarding values referencing all three savings plans WITH supporting evidence from table (for A, C and D) AND graphs drawn (for both A and C).

Y	Anaru	Cael	Deli
	$S = 50 \times 1.3^t$	$S = 100 \times 1.1^t$	$S = 10(t-2)^2 + 40$
1	65	110	50
2	84.5	121	40
3	109.85	133.10	50
4	142.80	146.41	80
5	185.64	161.05	130
6	241.34	177.16	200
7	313.74	194.87	290
8	407.86	214.35	400
9	530.22	235.79	530

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE question attempted towards solution.	1 u	2 u	3 u	1 r	2 r	Partial lack of detail in solution to (b)(iv).	Full solution to (b) (iv).

NCEA Level 1 Mathematics and Statistics (91028) 2020 — page 3 of	f 7
--	-----

Q TWO	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	Graph drawn with smooth curve, showing intercepts with axes and minimum point.	Graph drawn.		
(b) (i)	Substitute $x = 0$ into the equation of the path giving H = -0.2 (0 + 2)(0 - 8) = 3.2 So the ball will be $3.2 - 2.4 = 0.8$ metres	Correct value of 0.8 metres. Allow C.A.O.		
(b) (ii)	 Sample comments are: Altering the coefficient of -0.2 to something like -0.3 will make the ball go higher over the net. Altering the coefficient of -0.2 to something like -0.1 will make the ball go lower so it won't make it over the net. However, altering the coefficient of -0.2 will also alter the path of the ball in other ways, so that the path of the ball will not go through the original positions, so Tui will need to hit the ball from a different starting point. The current maximum height of the ball is at (3,5). Altering the (x + 2) and (x - 8) will alter the co-ordinates of this maximum point. So the whole graph could be shifted to the left by altering the values in the brackets, e.g. H = -0.2(x + 4)(x - 6) will shift the whole graph left by 2 metres. 	ONE valid non- trivial statement.	TWO valid non-trivial statements.	

(c) (i)	$H = k(x - 1.8)^{2} + 4.8$ Using $x = -3.2$ and $y = 2.3$ gives $2.3 = k(-3.2 - 1.8)^{2} + 4.8$ $2.3 = k(-5)^{2} + 4.8$ 2.3 - 4.8 = 25k -2.5 = 25k $k = -0.1 = \frac{-1}{10}$ So $H = -0.1(x - 1.8)^{2} + 4.8$ OR $H = -0.1x^{2} + 0.36x + 4.476$ Do not penalise the use of y instead of H.	No k-value considered, i.e. equation given as $H = (x - 1.8)^2 + 4.8$ OR Attempt made to find the value of <i>k</i> in a correct set-up of the equation.	Correct equation for <i>H</i> . OR C.A.O.	
(c) (ii)	$0 = -0.25(x - 2.1)^{2} + 3.9$ $0.25(x - 2.1)^{2} = 3.9$ $(x - 2.1)^{2} = \frac{3.9}{0.25}$ $(x - 2.1)^{2} = 15.6$ $x - 2.1 = \pm \sqrt{15.6}$ $x = 2.1 \pm 3.95$ x = 6.05 or x = -1.85 (ignore) i.e. Ball will land 6.05 metres from the net. Do not penalise the negative value not being considered. OR Graph drawn and used to identify <i>x</i> -value(s). OR Simplification to the quadratic equation $0.25x^{2} - 1.05x - 2.7975 = 0$ and then subsequent use of graphical calculator to find the <i>x</i> -value(s).	Equating the equation of the path of the ball to 0. OR Graph attempted with at least two correct points. OR C.A.O.	Reaching the stage in the working of $x - 2.1 = \sqrt{15.6}$ OR Reaching the stage in the working of $0.25x^2 - 1.05x - 2.7975 = 0$ OR Finding the value of x with an error in the working. OR Graph drawn with errors / lack of accuracy and a consistent value of x identified.	Finding the correct value of x , with clear justification and evidence. (Accept use of graphical calculator from an appropriate quadratic equation.) OR Value of approx. $x = 6$, with evidence that this has been read from an accurate and smooth graph.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE question attempted towards solution.	1 u	2 u	3 u	1 r	2 r	Partial lack of detail in solution to (c)(ii).	Clearly justified solution to (c) (ii).

Q THREE	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	Graph drawn with smooth curve, showing accuracy through	Graph drawn.		
	(1,1), (2,3), (3,9), (4,27).			
	25 25 15 10 10 10 5			
(b) (i)	Greatest vertical height at $(2,15)$ i.e. 15 metres above sea level. h = 15.	Height of 15 metres stated. Allow C.A.O.		
(b) (ii)	$h = -\frac{9}{6}x + c$	Gradient correct	Correct equation.	
	x = 10 and $y = 0$ gives $c = 15$	OR		
	$h = -\frac{9}{6}x + 15$	y-intercept correct.		
	OR by using the point (4, 9) OR with alternative methods.			
	Accept if equation is given as $y = \frac{-9}{6}x + 15$			
(b) (iii)	 Sample comments are: Altering the coefficient of -1.5 to something like -2.5 will make the bird's flight path steeper but will not change its greatest height reached i.e. still at (2, 15). Altering the coefficient of -1.5 to something like -0.5 will make the bird's flight path less steep but will not change its greatest height reached, i.e. still at (2, 15). Altering the value inside (x - 2)² alone will shift the maximum point to the right (or left) but will not actually change the value of the maximum height. Also, with a larger shift to the right, the flight path of the bird will not actually take off from the cliff. Not altering the value inside (x - 2)² but by changing the value of the maximum point of the bird's flight path. But, by increasing this value will also increase the position of the bird taking off from the cliff. So altering all three values in the equation could lead to a higher maximum height and also leaving the cliff 	ONE valid non-trivial statement.	TWO valid non–trivial statements.	

NCEA Level 1 Mathematics and Statistics (91028) 2020 — page 6 of 7

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE question attempted towards solution.	1 u	2 u	3 u	1 r	2 r	Partial lack of detail in solution to (c).	Full solution to (c).

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence
0-6	7 – 13	14 - 18	19 – 24