Assessment Schedule – 2022 FINAL

Chemistry: Demonstrate understanding of equilibrium principles in aqueous systems (91392)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)(i)	$Ag_2CrO_4 \rightleftharpoons 2Ag^+ + CrO_4^{2-}$	• Correct equilibrium equation and <i>K</i> _s expression.		
(ii)	$K_{\rm s} = [{\rm Ag}^+]^2 [{\rm CrO_4}^{2-}]$			
(iii)	$K_{\rm s} = (2 \times 6.50 \times 10^{-5})^2 \times (6.50 \times 10^{-5})$ $= 1.10 \times 10^{-12}$	• Method correct for determining <i>K</i> _s .	 Correct K_s (accept 2 – 4 significant figures). 	
(b)(i)	When AgNO ₃ is added, $[Ag^+]$ increases. Since Ag^+ is a common ion, this causes the reverse reaction of the equilibrium to speed up to use up some of the extra Ag^+ . As a result, more solid Ag_2CrO_4 is formed, i.e. the solubility of Ag_2CrO_4 decreases.	 Recognises [Ag⁺] increases / Ag⁺ is a common ion. 	• Explains that increase in [Ag ⁺] favours the reverse reaction.	
(ii)	When NaCN is added, the CN ⁻ ions form a complex ion with the Ag+ ions: $Ag^+ + 2CN^- \rightarrow [Ag(CN)_2]^-$ Since the Ag ⁺ ions are removed from the equilibrium, the forward reaction speeds up to replace some of the Ag ⁺ . This causes more solid Ag ₂ CrO ₄ to dissolve, i.e. the solubility of Ag ₂ CrO ₄ increases.	 Recognises Ag⁺ ions form a complex ion with CN⁻ ion OR Ag⁺ reacts with CN⁻ so [Ag⁺] decreases. 	• Explains that the formation of a complex ion removes Ag ⁺ from equilibrium / causes decrease in [Ag ⁺].	• Fully explains, using equilibrium principles, how the solubility of Ag ₂ CrO ₄ is affected by addition of a common ion and formation of a complex ion. Complex ion equation required.
(c)	$IP = \left(\frac{50}{80} \times 0.00154\right) \times \left(2 \times \frac{30}{80} \times 0.0686\right)$ $= 4.95 \times 10^{-5}$ Since IP > K _s , a precipitate of AgCl will form.	 EITHER correct [Ag⁺] OR [Cl⁻] Correct comparison of IP with K_s. 	 Correct process to calculate IP and compare with K_s, but does not multiply [Cl⁻] by 2. 	• Correct calculation (accept $2-4$ significant figures) and comparison with K_s to show that AgCl will form a precipitate.

NCEA Level 3 Chemistry (91392) 2022 — page 2 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e,with minor error / omission in one part.	2e

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i)	$Na^+ > OCl^- > HOCl = OH^- > H_3O^+$	• THREE correct species identified in the correct order.		
(ii)	HOCl + H ₂ O \rightleftharpoons OCl ⁻ + H ₃ O ⁺ $K_{a} = \frac{\left[\text{OCl}^{-}\right]\left[\text{H}_{3}\text{O}^{+}\right]}{\left[\text{HOCl}\right]}$ 2.95×10 ⁻⁸ = $\frac{\left(10^{-4.80}\right)^{2}}{\left[\text{HOCl}\right]}$ [HOCl] = 0.00851 mol L ⁻¹	• Correct process for calculating [HOCl].	 Correctly calculates [HOCl], including correct unit (accept 2 – 4 significant figures). 	
(iii)	NaOCl is a basic salt and completely dissociates to produce a high [ions], i.e. Na ⁺ and OCl ⁻ ions, in solution. NaOCl \rightarrow Na ⁺ + OCl ⁻ Since the [ions] is high, NaOCl solution will be a good electrical conductor. HOCl is a weak acid and only partially dissociates to produce a relatively low [ions], i.e. OCl ⁻ and H ₃ O ⁺ ions, in solution. HOCl + H ₂ O \rightleftharpoons OCl ⁻ + H ₃ O ⁺ Since the [ions] is low, HOCl solution will be a poor electrical conductor.	• Recognises a solution requires mobile ions for electrical conductivity.	 Explains why NaOCl is a good electrical conductor. OR Explains why HOCl is a poor electrical conductor. 	• Fully compares the electrical conductivity of BOTH solutions, including relevant equations (equation for HOCl must include water).
(b)	When HCl is added, the H_3O^+ ions are neutralised by the basic component of the buffer, OCl ⁻ . As a result, the pH of the solution does not significantly change, since the H_3O^+ ions are removed from the solution / HOCl produced is a much weaker acid than HCl.	 Identifies the acid / H₃O⁺ ions are removed / neutralised by the buffer. 	Explains that the OCI ⁻ neutralises/removes the H ₃ O ⁺ and therefore the pH does not significantly change.	

(c)	Both HF and CH ₃ COOH are weak acids. Since the solutions have the same concentration, but HF has a lower pH, this means HF dissociates to a greater extent than CH ₃ COOH/HF must have a greater K_a than CH ₃ COOH. This means HF has a higher [H ₃ O ⁺] and therefore a lower pH. CH ₃ COONa is a basic salt. The CH ₃ COO ⁻ is a weak base and therefore partially dissociates to produce a high [OH ⁻]. This means CH ₃ COONa has a lower [H ₃ O ⁺] than both HF and CH ₃ COOH, so it has the highest pH. HF + H ₂ O \rightleftharpoons F ⁻ + H ₃ O ⁺	• Recognises HF has the highest [H ₃ O ⁺] / CH ₃ COO ⁻ has the lowest [H ₃ O ⁺].	• Explains the order for TWO of the solutions (ok to refer to only OH ⁻ for CH ₃ COO ⁻).	 Fully justifies the order in terms of [H₃O⁺], including at least two relevant equations.
	$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$			
	$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e,with minor error / omission in one part.	2e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	For this solution: $NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{+} + OH^{-}$ $[NH_{3}] = 0.124 \text{ mol } L^{-1}$ For this solution: $[NH_{4}^{+}] = [OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]}$ Using K _a to calculate pH: $K_{a} = \frac{[NH_{3}][H_{3}O^{+}]}{[NH_{4}^{+}]}$ 5.75×10 ⁻¹⁰ = 0.124× $\frac{[H_{3}O^{+}]^{2}}{10^{-14}}$ $[H_{3}O^{+}] = 6.81 \times 10^{-12} \text{ mol } L^{-1}$ pH = 11.2	Correct process for calculating pH of ammonia solution.	 Correctly calculates pH of ammonia solution (accept 2 – 4 significant figures). 	
(b)(i) (ii)	$K_{a} = \frac{\left[NH_{3}\right]\left[H_{3}O^{+}\right]}{\left[NH_{4}^{+}\right]}$ 5.75×10 ⁻¹⁰ = 5× $\frac{\left[H_{3}O^{+}\right]}{2}$ $\left[H_{3}O^{+}\right] = 2.30 \times 10^{-10}$ pH = 9.64 Since pH > pK_{a}, [NH_{3}] > [NH_{4}^{+}]. This means the buffer will be more effective at neutralising small volumes of strong acid. OR Evaluates effectiveness using 5 : 2 ratio. The pH is 9.24 halfway to the equivalence point. Halfway to the equivalence point, [NH_{3}] = [NH_{4}^{+}] since half of the NH_{3} has reacted with HNO_{3} to form NH_{4}^{+}. At this point, the pH of the solution will be equal to the pK_{a} since 1NH_{3}:1NH_{4}^{+}.	 Correct process for calculating pH of buffer solution. Recognises the buffer is more effective at neutralising a strong acid. Identifies the correct pH halfway to the equivalence point/pH equals pK_a OR Recognises [NH₃] = [NH₄⁺]. 	 Correctly calculates pH of buffer solution. OR Since [NH₃] > [NH₄⁺] / [base] > [acid], the buffer is more effective at neutralising a strong acid / evaluates effectiveness using 5:2 ratio. Explains that the pH equals the pK_a since half of the NH₃ has reacted (with HNO₃) to form NH₄⁺, so [NH₃] = [NH₄⁺]. 	 Correct pH of buffer solution. AND Explains why the buffer is more effective at neutralising strong acid. Must compare relative [NH₃] and [NH₄⁺] for E8. If only compares [base] and [acid], then minor error.

(c)(i)	CH ₃ COOH is a stronger acid than NH ₄ ⁺ since it has a larger K_a . As a result, the conjugate base, CH ₃ COO ⁻ , will be weaker base than NH ₃ and will therefore have a lower [OH ⁻] / higher [H ₃ O ⁺]. This means the initial pH will be lower.	 Circles "lower" for both parts (i) and (ii) OR Circles "lower" for one and correctly identifies differences in strength of either relevant bases for (i) or acids for (ii). 	• Explains either (i) or (ii) by comparing relative size of <i>K</i> _a / p <i>K</i> _a .	• Explains both (i) and (ii) in terms of magnitude of <i>K</i> _a / <i>pK</i> a, and either relative [H ₃ O ⁺] or [OH ⁻].
(ii)	At the equivalence point, the weak acids CH_3COOH and NH_4^+ will be present. Since CH_3COOH is a stronger acid than NH_4^+ , it will have a higher $[H_3O^+]$ and therefore a lower pH at the equivalence point.			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e,with minor error / omission in one part.	2e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 13	14 – 18	19 – 24