Assessment Schedule - 2023

Physics: Demonstrate understanding of mechanics (91171)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$\begin{aligned} & v_{\mathrm{f}}=v_{\mathrm{i}}+a t \\ & 5.45=0+a \times 6.61 \\ & a=0.825 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	- This is a show question, correct substitution must be shown.		
(b)(i) (ii)	$\begin{aligned} & d=v_{\mathrm{i}} t+\frac{1}{2} a t^{2}=0+\frac{1}{2} \times 0.825 \times 6.61^{2} \\ & d=18.0 \mathrm{~m} \end{aligned}$ Player may not run in a straight line.	- Correct calculation. OR (ii).	- Correct calculation plus assumption.	
(c)(i) (ii) (iii)	Impulse is change in momentum. Calculation: $\begin{aligned} & \Delta p=m v_{\mathrm{f}}-m v_{\mathrm{i}} \\ & =0.18 \times 0-0.18 \times 44.4 \\ & =7.99 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & F=\frac{\Delta p}{t}=\frac{7.99}{0.51}=15.7 \mathrm{~N} \end{aligned}$ Having a relaxed arm increases the time it takes to stop the ball, or glove compresses when a ball is caught - this also increases the time to stop the ball. For the same momentum / impulse/ change in momentum, the increased time for the catcher will reduce the force of impact, (so less likely to cause injury or drop the catch). (Accept correct argument using deceleration.)	- (i) Change in momentum. OR (ii) Δp correct OR (iii) F decreases as t increases.	- (ii) Δp correct. OR (iii) Explain the effect of catching with a relaxed arm and a padded glove.	- (i) Change in momentum. AND (ii) Δp correct. AND (iii)explain the effect of catching with a relaxed arm and a padded glove.

$(\mathrm{d})(\mathrm{i})$	Momentum is conserved.	- Momentum is conserved. OR Any correct momentum calculated.	- Correct method with one error.	- Complete answer.
(ii)	$\begin{aligned} & p_{\mathrm{f}}=\left(m_{1}+m_{2}\right) \times v_{\mathrm{f}}=110 \times \overrightarrow{2}=\overrightarrow{220} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & p_{\mathrm{i}}=\overrightarrow{50 v_{\mathrm{i}}}+\overline{60 \times 0.4}=\overrightarrow{50 v_{\mathrm{i}}}+\overleftarrow{24} \\ & \frac{p_{\mathrm{i}}}{}=p_{\mathrm{f}} \\ & \overrightarrow{50 v_{\mathrm{i}}}+\overleftarrow{24}=\overrightarrow{220} \\ & \overrightarrow{50 v_{\mathrm{i}}}=\overrightarrow{244} \\ & v_{\mathrm{i}}=4.88 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	1a	$\begin{aligned} & 2 \mathrm{a} \\ & 1 \mathrm{~m} \end{aligned}$	$\begin{gathered} 3 \mathrm{a} \\ 1 \mathrm{~m}+1 \mathrm{a} \\ 1 \mathrm{e}+1 \mathrm{a} \\ 1 \mathrm{e} \end{gathered}$	$\begin{gathered} 4 \mathrm{a} \\ 1 \mathrm{~m}+3 \mathrm{a} \\ 1 \mathrm{~m}+2 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{a} \end{gathered}$	$\begin{gathered} 2 \mathrm{~m} \\ 2 \mathrm{~m}+2 \mathrm{a} \\ 2 \mathrm{~m}+1 \mathrm{a} \\ 1 \mathrm{e}+1 \mathrm{~m} \\ 1 \mathrm{e}+3 \mathrm{a} \end{gathered}$	$\begin{gathered} 3 m \\ 3 m+1 a \\ 2 e \\ 1 e+1 m+2 a \\ 1 e+1 m+1 a \\ 1 e+2 m \end{gathered}$	$\begin{gathered} 2 \mathrm{e}+1 \mathrm{~m} \\ 2 \mathrm{e}+2 \mathrm{a} \\ 2 \mathrm{e}+1 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{~m}+1 \mathrm{a} \end{gathered}$	$2 \mathrm{e}+1 \mathrm{~m}+1 \mathrm{a}$

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$\begin{aligned} & F_{\mathrm{c}}=\frac{m v^{2}}{r}=\frac{55 \times 7^{2}}{15} \\ & F_{\mathrm{c}}=179.7, F_{\mathrm{c}}=180 \mathrm{~N} \end{aligned}$	- Working shown and correct answer.		
(b)		- TWO out of three correctly labelled and drawn.	- All THREE correctly labelled and drawn.	
(c)(i) (ii)	Friction. - Velocity is a vector (it has size and direction). - Acceleration is a change in velocity. - Speed is constant, but because direction is changing, so too is the velocity, so it is accelerating.	- Friction . OR ONE point from (ii).	- TWO linked points from (ii).	- Friction. AND Full answer to (ii) with clear links.
(d)	- (F_{c} is provided by friction force created between shoes and the ground.) - If the ground is muddy, this force will reduce. - (If wet and slippery), the runner will no longer have enough F_{c} to move in a circle, and will move off at a tangent / move in a circle with a larger radius.	- ONE point.	- TWO points.	- FULL answers.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	1 a	$\begin{aligned} & 2 \mathrm{a} \\ & 1 \mathrm{~m} \end{aligned}$	$\begin{gathered} 3 \mathrm{a} \\ 1 \mathrm{~m}+1 \mathrm{a} \\ 1 \mathrm{e}+1 \mathrm{a} \\ 1 \mathrm{e} \end{gathered}$	$\begin{gathered} 4 \mathrm{a} \\ 1 \mathrm{~m}+3 \mathrm{a} \\ 1 \mathrm{~m}+2 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{a} \end{gathered}$	$\begin{gathered} 2 m \\ 2 m+2 a \\ 2 m+1 a \\ 1 e+1 m \\ 1 e+3 a \end{gathered}$	$\begin{gathered} 3 \mathrm{~m} \\ 3 \mathrm{~m}+1 \mathrm{a} \\ 2 \mathrm{e} \\ 1 \mathrm{e}+1 \mathrm{~m}+2 \mathrm{a} \\ 1 \mathrm{e}+1 \mathrm{~m}+1 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{~m} \end{gathered}$	$\begin{gathered} 2 \mathrm{e}+1 \mathrm{~m} \\ 2 \mathrm{e}+2 \mathrm{a} \\ 2 \mathrm{e}+1 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{~m}+1 \mathrm{a} \end{gathered}$	$2 \mathrm{e}+1 \mathrm{~m}+1 \mathrm{a}$

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	$\begin{aligned} & v_{\mathrm{v}}=v \sin \theta \\ & =22 \sin 35=12.6 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	- Show question - must see substitution. (accept $22 \cos 55$)		
(b)	$\begin{aligned} & v_{\mathrm{f}}=0 \\ & v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a d \\ & 0=12.6^{2}-2 \times 9.8 \times d \\ & d=8.1 \Rightarrow \text { height }=1.6+8.1=9.7 \mathrm{~m} \end{aligned}$	- 8.1 m . OR Adds 1.6 m to any calculated d.	- Correct answer.	
(c)(i) (ii)	Force arrows downwards, and all the same size on diagram. - Forces: There is no horizontal force. There is a constant downwards vertical force due to gravity. - Acceleration: There is no horizontal acceleration. There is constant downwards acceleration due to gravity. - Horizontal velocity: There is constant horizontal velocity. - Vertical velocity: Vertical velocity starts at $12.6 \mathrm{~m} \mathrm{~s}^{-1}$ upwards and slows to 0 at the maximum height, and then constantly increases downwards. (The ball hits the ground faster than it left the bat.)	(i) OR TWO correct but unlinked statements.	- Statements that correctly link all three of F, a, and v for either horizontal or vertical motion	- Correct force arrows on diagram. AND Statements that correctly link all three of F, a, and v for both horizontal and vertical motion.

NO	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	1a	$\begin{aligned} & 2 \mathrm{a} \\ & 1 \mathrm{~m} \end{aligned}$	$\begin{gathered} 3 \mathrm{a} \\ 1 \mathrm{~m}+1 \mathrm{a} \\ 1 \mathrm{e}+1 \mathrm{a} \\ 1 \mathrm{e} \end{gathered}$	$\begin{gathered} 4 \mathrm{a} \\ 1 \mathrm{~m}+3 \mathrm{a} \\ 1 \mathrm{~m}+2 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{a} \end{gathered}$	$\begin{gathered} 2 m \\ 2 m+2 a \\ 2 m+1 a \\ 1 e+1 m \\ 1 e+3 a \end{gathered}$	$\begin{gathered} 3 \mathrm{~m} \\ 3 \mathrm{~m}+1 \mathrm{a} \\ 2 \mathrm{e} \\ 1 \mathrm{e}+1 \mathrm{~m}+2 \mathrm{a} \\ 1 \mathrm{e}+1 \mathrm{~m}+1 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{~m} \end{gathered}$	$\begin{gathered} 2 \mathrm{e}+1 \mathrm{~m} \\ 2 \mathrm{e}+2 \mathrm{a} \\ 2 \mathrm{e}+1 \mathrm{a} \\ 1 \mathrm{e}+2 \mathrm{~m}+1 \mathrm{a} \end{gathered}$	$2 \mathrm{e}+1 \mathrm{~m}+1 \mathrm{a}$

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0-7	8-13	14-18	19-24

