Assessment Schedule - 2023

Chemistry: Demonstrate understanding of equilibrium principles in aqueous systems (91392)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { ONE } \\ & \text { (a)(i) } \end{aligned}$	$\mathrm{Pb}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{OH}^{-}$	- Correct equilibrium equation and K_{s} expression.		
(ii)	$K_{\mathrm{s}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$			
(iii)	$\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-9.55}} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{10^{-9.55}}=3.55 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & 8 \times 10^{-17}=\left[\mathrm{Pb}^{2+}\right] \times\left(3.55 \times 10^{-5}\right)^{2} \\ & {\left[\mathrm{~Pb}^{2+}\right]=6.35 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}=\text { solubility }} \end{aligned}$	- Substitutes into K_{s} expression. OR Correct [OH^{-}].	- Correct process for determining solubility with one minor error.	- Correct solubility, including units and 2-4 significant figures. AND
(iv)	When the pH is decreased, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases. The $\mathrm{H}_{3} \mathrm{O}^{+}$removes OH^{-}from the equilibrium and neutralises it according to the following equation: $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ Since $\left[\mathrm{OH}^{-}\right]$decreases, the equilibrium will speed up the rate of the forward reaction to replace some of the OH^{-}. As a result, more solid $\mathrm{Pb}(\mathrm{OH})_{2}$ will dissolve, so solubility increases.	- Recognises that a decrease in pH will increase $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.	- Explains that a decrease in $\left[\mathrm{OH}^{-}\right]$due to reaction with $\mathrm{H}_{3} \mathrm{O}^{+}$will favour formation of more OH^{-}in solution / favour forward reaction.	Fully explains, using equilibrium principles, the effect of decreasing the pH on the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ (replacing the removed hydroxide ions idea), including equation.

NØ	N1	$\mathbf{N 2}$	$\mathbf{A 3}$	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 a	2 a	3 a	4 a	3 m	4 m	2 e But allow minor error $/$ omission in one part.	2 e

Q	Evidence	Achievement	Merit	Excellence
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	$\begin{aligned} & {\left[\mathrm{CO}_{3}{ }^{2-}\right]=\frac{50}{85} \times 0.211=0.124 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{HCO}_{3}^{-}\right]=\frac{35}{85} \times 0.861=0.355 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCO}^{3-}\right]} \\ & 10^{-10.3}=\frac{0.124 \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{0.355} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.43 \times 10^{-10}, \mathrm{pH}=9.84} \end{aligned}$	- Calculates $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ or $\left[\mathrm{HCO}_{3}{ }^{-}\right]$ OR Substitutes correctly into K_{a} expression or the HendersonHasselbalch equation.	- Correct process for calculating pH of buffer solution with one minor error, e.g., error in one of the dilutions.	- Correctly calculates pH of buffer solution (2-4 significant figures).
(ii)	The solution will act as an effective buffer over a pH range 9.3-11.3 ($\mathrm{p} K_{\mathrm{a}} \pm 1$). The solution made by the student has a pH of 8.50 which does not fall within this pH range.	- Recognises why the solution will not act effectively as a buffer.		AND
(iii)	For the solution to function as a buffer equally effective at neutralising added strong acid or base, the ratio of $\mathrm{HCO}_{3}{ }^{-}: \mathrm{CO}_{3}{ }^{2-}$ needs to be a $1: 1$ ratio. At this ratio, the pH of the buffer solution will be equal to the $\mathrm{p} K_{\mathrm{a}}$ of 10.3 . Since the pH of 8.50 is lower than 10.3 , some strong base (e.g. NaOH) needs to be added until the pH reaches 10.3.	- Identifies that carbonate ions / (strong) base needs to be added. OR Identifies pH of 10.3 or ratio of 1:1 required.	- Explains how the solution can be altered by adding more base with reference to either the ratio of HCO_{3}^{-}: $\mathrm{CO}_{3}{ }^{2-}$ OR pH 10.3.	- Elaborates on how the solution needs to be altered to produce a buffer equally effective at neutralising both added acid or base. Must mention adding carbonate ions or a strong base like NaOH to increase pH . Need to refer to BOTH 1:1 ratio and pH of $10.3\left(\mathrm{p} K_{\mathrm{a}}\right)$.

(b)(i) (ii)	$\begin{aligned} & \mathbf{C l}^{-}>\mathbf{N H}_{4}{ }^{+}>\mathrm{NH}_{3}=\mathbf{H}_{3} \mathbf{O}^{+}>\mathrm{OH}^{-} \\ & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \\ & 5.75 \times 10^{-10}=\frac{\left(10^{-5.25}\right)^{2}}{\left[\mathrm{NH}_{4}^{+}\right]} \\ & {\left[\mathrm{NH}_{4}^{+}\right]=0.0550 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{n}\left(\mathrm{NH}_{4}^{+}\right)=0.0550 \times 0.500=0.0275 \mathrm{~mol} \\ & \mathrm{~m}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)=0.0275 \times 53.5=1.47 \mathrm{~g} \end{aligned}$	- All three boxes correct. - Correct $\left[\mathrm{NH}_{4}^{+}\right]$.	- Correct mass of $\mathrm{NH}_{4} \mathrm{Cl}$, including unit and significant figures $(2-4)$.	
(iii)	$\mathrm{NH}_{4} \mathrm{Cl}$ is an acidic salt and completely dissociates to form high $\left[\mathrm{NH}_{4}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$. As a result, $\mathrm{NH}_{4} \mathrm{Cl}$ has a high [ions] and is therefore a good electrical conductor. $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$ The $\mathrm{NH}_{4}{ }^{+}$ion is only a weak acid and therefore partially dissociates to form a relatively low $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. (Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the pH is still less than 7 , but not as low as for a strong acid.) $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ HBr is a strong acid and completely dissociates to form high $\left[\mathrm{Br}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. $\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Br}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ As a result, HBr has a high [ions], and is therefore a good electrical conductor. Furthermore, since HBr completely dissociates, it produces a higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ than $\mathrm{NH}_{4}{ }^{+}$, and therefore has a lower pH .	- Recognises a solution requires mobile ions for electrical conductivity. OR pH is dependent on $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.	- Links electrical conductivity to degree of dissociation and high [ions] for BOTH solutions. - Links pH to the degree of dissociation and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for BOTH solutions.	- Fully compares the pH and electrical conductivity of BOTH solutions, including relevant equations (at least two correct as shown in schedule).

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 a	2 a	3 a	4 a	3 m	4 m	2e, but allow minor error $/$ omission in one part.	2 e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	$\begin{aligned} & \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCOOH}^{+}\right]} \\ & 1.82 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{0.119} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.65 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{pH}=-\log 4.65 \times 10^{-3}=2.33 \end{aligned}$	- Correct process for calculating pH of HCOOH solution (correct substitution).	- Correctly calculates pH of HCOOH solution (2-4 significant figures).	
(b)(i)	Approximate pH range: 8.0-8.4 For this solution: $\begin{equation*} \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOOH}+\mathrm{OH}^{-} \tag{ii} \end{equation*}$ For this solution: $[\mathrm{HCOOH}]=\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$ Using K_{a} to calculate pH : $\begin{aligned} & K_{\mathrm{a}}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HCOOH}]} \\ & 1.82 \times 10^{-4}=\frac{\left(0.119 \times \frac{15}{35}\right) \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{10^{-14}} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.97 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{pH}=8.22 \end{aligned}$	- Estimate of pH falls within expected range (don't accept a range from candidates). - Correct process to calculate pH (cannot use $[\mathrm{KOH}]$ in calculation). Looking for correct substitution.	- Calculates pH at the equivalence point (allow error in dilution; pH of 8.41 if uses undiluted concentration).	- Calculates the pH at the equivalence point (accepts 2-4 significant figures). AND Explains how to choose a suitable indicator (should relate to the approximate $\mathrm{p} K_{\mathrm{a}}$ of the indicator).

(iii)	A suitable indicator would need to change colour in the vertical section of the curve which stretches from a pH of approximately 6 10. The $\mathrm{p} K_{\mathrm{a}}$ of the indicator would ideally need to be close to the equivalence point pH , since the pH range over which the indicator will change colour is equal to the $\mathrm{p} K_{\mathrm{a}} \pm 1$. This would mean the indicator would definitely change colour in the pH range $6-10$.	- Recognises the indicator needs to change colour in the vertical section of the curve / close to the equivalence point.	- Explains the pH range over which a suitable indicator would need to change colour and relates this to its $\mathrm{p} K_{\mathrm{a}}$.	
(c)(i)	Between $8-12 \mathrm{~mL}$, a buffer solution consisting HCOOH and HCOO is present in the conical flask. When the KOH is added, the OH^{-}ions are neutralised by the buffer according to the equation below: $\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}$ The strong base, KOH , is reacted to form a weak base, HCOO^{-}, which has less effect on the pH . There is a small change in $[\mathrm{HCOOH}]$: $\left[\mathrm{HCOO}^{-}\right]$, so only a small change in pH .	- Recognises a buffer solution is present between 8 and 12 mL .	- Explains how the HCOOH present in the buffer solution neutralises/reacts with/removes the added KOH .	- Fully explains why the pH does not significantly change between $8-12$ mL , including relevant equation (allow minor error in equation for E7).
(ii)	After 23 mL of KOH has been added: $\begin{aligned} & n(\mathrm{KOH})=c v=0.0893 \times 0.003=\mathbf{2 . 6 7 9} \times \mathbf{1 0}^{-4} \mathbf{~ m o l} \\ & c(\mathrm{KOH})=\frac{\mathrm{n}}{V}=\frac{2.679 \times 10^{-4}}{0.038} \\ & =\mathbf{7 . 0 5} \times \mathbf{1 0}^{-3} \mathbf{~ m o l ~ L} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1 \times 10^{-14}}{7.05 \times 10^{-3}}} \\ & =1.42 \times 10^{-12} \\ & \mathrm{pH}=-\log 1.42 \times 10^{-12}=11.8 \end{aligned}$	- Correctly calculates $\mathrm{n}(\mathrm{KOH})$ remaining in excess. OR Shows correct process to calculate diluted $[\mathrm{KOH}]$.	- Correctly calculates diluted $c(\mathrm{KOH})$.	AND Correctly calculates pH (2-4 significant figures) after 23 mL has been added.

NØ	N1	$\mathbf{N 2}$	$\mathbf{A 3}$	$\mathbf{A 4}$	M5	M6	E7	E8
No response; no relevant evidence.	1 a	2 a	3 a	4 a	3 m	4 m	2 e, but allow minor error $/$ omission in one part.	2 e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0-8	9-13	14-18	19-24

