## Assessment Schedule - 2023

## Physics: Demonstrate understanding of mechanical systems (91524)

## Evidence

| Q | Evidence | Achievement | Merit | Excellence |
| :---: | :---: | :---: | :---: | :---: |
| ONE <br> (a) | Horizontal component of the reaction force pointing towards centre of circle. | - Correct answer on diagram provided. (Accept $F_{\mathrm{c}}, F_{\text {net }}$ or $F_{\mathrm{r}}$ hoz as label.) OR <br> Appropriate vector diagram with appropriate orientation. | - |  |
| (b) | $F_{\mathrm{c}}=\frac{m v^{2}}{r} \text { and } F_{\mathrm{g}}=m g$ <br> Therefore, using the vector diagram: $\begin{aligned} & \theta=\tan ^{-1}\left(\frac{F_{\mathrm{c}}}{F_{\mathrm{g}}}\right) \\ & \theta=\tan ^{-1}\left(\frac{0.3844}{1.1772}\right) \end{aligned}$ <br> OR $\begin{aligned} & F_{\mathrm{c}}=\frac{m v^{2}}{r}=F_{\mathrm{R}} \sin \theta \\ & F_{\mathrm{g}}=m g=F_{\mathrm{R}} \cos \theta \\ & v^{2}=r g \tan \theta \\ & \theta=\tan ^{-1}\left(\frac{1.55^{2}}{0.750 \times 9.81}\right)=18.1^{\circ} \end{aligned}$ <br> Accept other reasonable methods of solving this. | - One error in calculation. (e.g. incorrect trig function). <br> OR <br> Correct vector diagram. <br> OR <br> Both $F_{\mathrm{c}}$ and $F_{\mathrm{g}}$ calculated correctly. | - Correct answer. |  |


| (c) | The feeling of weight depends on the size of the reaction force. At the bottom of the loop, $\boldsymbol{F}_{\mathrm{R}}$ must be greater than Fg to provide the Fc. $\left(F_{\mathrm{c}}=F_{\mathrm{R}}-F_{\mathrm{g}}\right)$. So, a person feels heavier at the bottom of the loop. At the top of the vertical circle the size of the reaction force is small or negligible, so a person will feel lighter ( $F_{\mathrm{c}}=F_{\mathrm{R}}+F_{\mathrm{g}}$ ). | - Correct vectors, including relative sizes at the top and bottom of the circle, $F_{\mathrm{g}}$ and $F_{\mathrm{R}}$ only. Fg must be the same for both and Fr must be bigger than $F_{\mathrm{g}}$ at the bottom but smaller than $F_{\mathrm{g}}$ at top. (only accept additional $F_{\mathrm{c}}$ if this shown as the $F_{\text {net }}$ not an additional force). <br> OR <br> Recognition that it is the size of the reaction force that the feeling of weight depends on. <br> OR <br> Recognition that reaction force is greatest at the bottom of the circle. <br> OR <br> Equations to show Fc at top and bottom. | - TWO of: <br> - Correct vectors, including relative sizes at the top and bottom of the circle. <br> - At the bottom of the loop, $F_{\mathrm{R}}$ must be greater than $F_{\mathrm{g}}$ to provide the $F_{\mathrm{c}} .\left(F_{\mathrm{c}}=\right.$ $F_{\mathrm{R}}-F_{\mathrm{g}}$ ). So, a person feels heavier at the bottom of the loop. <br> - At the top of the vertical circle the size of the reaction force is small or negligible , so a person will feel lighter $\left(F_{\mathrm{c}}=F_{\mathrm{R}}+F_{\mathrm{g}}\right)$. | - Full answer including accurate diagram, clear justification of larger $F_{\mathrm{R}}$ at bottom compared to top. |
| :---: | :---: | :---: | :---: | :---: |
| (d) | Minimum speed at the top of loop: $\begin{aligned} & F_{\mathrm{c}}=F_{\mathrm{g}} \\ & \frac{m v^{2}}{r}=m g \rightarrow v^{2}=r g \\ & v^{2}=0.250 \times 9.81=2.4525 \end{aligned}$ <br> Total energy at the top of loop: $\begin{aligned} & m g h+\frac{1}{2} m v^{2}=(0.120+9.81+0.500)+\left(\frac{1}{2} \times 0.120 \times 1.566^{2}\right) \\ & E_{\mathrm{T}}=0.5886+0.14715=0.73575 \\ & m g h+\frac{1}{2} m v^{2}=(0.120 \times 9.81 \times 0.500)+\left(\frac{1}{2} \times 0.120 \times 2.4525\right) \\ & =0.5886+0.14715=0.73575 \mathrm{~J} \end{aligned}$ <br> Speed of car at the bottom of the loop: $\begin{aligned} & E_{\mathrm{k}}=\frac{1}{2} m v^{2} \rightarrow v=\sqrt{\frac{2 \times 0.73575}{0.120}} \\ & =3.50 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ | - EITHER <br> Stated the equation for total E at top $m g h+\frac{1}{2} m v^{2}$ <br> OR $F_{\mathrm{c}}=F_{\mathrm{g}}$ <br> OR Correct answer for $v_{2}=2.4525$ OR $v=1.566 \mathrm{~m} \mathrm{~s}^{-1}$ | - EITHER <br> Calculates v and uses this to determine the kinetic energy at the top of the loop: <br> $E_{\mathrm{k}} \mathrm{top}=0.14715 \mathrm{~J}$ <br> OR <br> Calculates total energy ( $E_{\mathrm{k}}+E_{\mathrm{p}}$ ) at top of loop with one minor error. | - Correct answer for speed at the bottom of the loop. |

NCEA Level 3 Physics (91524) 2023 — page 1 of 5

| $\mathbf{N Ø}$ | $\mathbf{N 1}$ | $\mathbf{N 2}$ | $\mathbf{A 3}$ | $\mathbf{A 4}$ | M5 | M6 | E7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No relevant <br> evidence. | 1 a | 2 a | 3 a | 4 a |  |  |  |

NCEA Level 3 Physics (91524) 2023 — page 1 of 5

| Q | Evidence | Achievement | Merit | Excellence |
| :---: | :---: | :---: | :---: | :---: |
| TWO <br> (a) | Gravitational potential energy to both linear kinetic energy (translational)and rotational kinetic energy. / GPE $\rightarrow E_{\mathrm{k}(\mathrm{lin})}+E_{\mathrm{k}(\text { rot })}$ | - Correct answer in either form. |  |  |
| (b) | $\begin{aligned} & \text { GPE at start } \rightarrow E_{\mathrm{k}(\text { lin })}+E_{\mathrm{k}(\text { rot })} \\ & \text { GPE at start }=m g h=5.50 \times 9.81 \times 1.34=72.3 \mathrm{~J} \\ & E_{\mathrm{k}(\text { lin })} \text { gained }=1 / 2 \times 5.50 \times 3.40^{2}=31.8 \mathrm{~J} \\ & E_{\mathrm{k}(\text { rot })} \text { gained }=72.3-31.8=40.5 \mathrm{~J} \\ & \text { as } v=r \omega \text { and } E_{\mathrm{k}(\text { rot })}=1 / 2 I \omega^{2} \\ & \omega=\frac{3.40}{0.280}=12.1 \mathrm{rad} \mathrm{~s}^{-1} \\ & I=\frac{2 \times 40.5}{12.1^{2}}=0.553 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$ | - GPE at start $=72.3 \mathrm{~J}$ <br> OR $E_{\mathrm{k}(\text { lin })}=31.8 \mathrm{~J}$ <br> OR uses $v=r \omega$ to work out $\omega$ $12.1 \mathrm{rads}^{-1}$ | - EITHER all 3 of: <br> - GPE lost $=72.3 \mathrm{~J}$ <br> - $E_{\mathrm{k}(\text { lin })}=31.8 \mathrm{~J}$ <br> - $E_{\mathrm{k}(\mathrm{rot})}=40.5 \mathrm{~J}$ <br> OR <br> Calculates $I$ using GPE $\rightarrow E_{\mathrm{k} \text { (rot) }}$ only therefore $E_{\mathrm{k}(\text { rot })}=72.3=1 / 2 I \omega^{2}$ $\begin{aligned} & I=\frac{72.3 \times 2}{12.12} \\ & I=0.987 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$ | - ALL of: <br> - GPE lost $=72.3 \mathrm{~J}$ <br> - $E_{\mathrm{k}(\text { lin })}=31.8 \mathrm{~J}$ <br> - $E_{\mathrm{k}(\mathrm{rot}}=40.5 \mathrm{~J}$ <br> - $\mathrm{I}=0.553 \mathrm{~kg} \mathrm{~m} 2$ <br> Accept $0.549 \mathrm{~kg} \mathrm{~m}{ }^{2}$ if using unrounded values. |
| (c) | In the absence of net external torque, angular momentum is conserved. <br> Holding his arms out increases rotational inertia, since mass is further away from the axis of rotation. <br> Since $L=I \omega$, when rotational inertia increases, angular velocity decreases, causing him to spin slower when his arms are outstretched. | - Angular momentum is conserved. <br> OR <br> Rotational inertia increases when arms are extended. <br> OR <br> If $I$ increases, then $\omega$ decreases. | - Linking $I \propto m r^{2}$ to mass distribution or increased r. (mathematical relationship not required) <br> Since $L=I \omega$, when rotational inertia increases, angular velocity decreases and angular momentum is conserved assuming. |  |
| (d) | $\begin{aligned} & \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha t \\ & 7.00=3.00+4.50 \alpha \\ & \alpha=0.889 \mathrm{rad} \mathrm{~s}^{-2} \\ & \omega_{\mathrm{f}}^{2}=\omega_{\mathrm{i}}^{2}+2 \alpha \theta \\ & 49=9+2 \times 0.889 \theta \\ & \theta=22.5 \mathrm{rad} \\ & \text { Number of revolutions }=\frac{22.5}{2 \pi}=3.58 \mathrm{revs} \end{aligned}$ | - Correct answer for angular acceleration. <br> OR <br> Correct working for angular displacement with minor error from angular acceleration (i.e. wrong change in $\omega$ ). | - One error in calculation. E.g. two out of three stages correct <br> OR <br> Correct answer for angular acceleration AND angular displacement: $0.889 \mathrm{rad} \mathrm{~s}^{-2} \text { AND } 22.5 \mathrm{rad} .$ | - Correct answer for number of revolutions. |

NCEA Level 3 Physics (91524) 2023 — page 1 of 5

| NØ | N1 | $\mathbf{N 2}$ | A3 | A4 | M5 | M6 | E7 | E8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No evidence | 1a | 2 a or 1 m | 3 a or 1 e | 4 a | 2 m | 3 m | $1 \mathrm{a}+1 \mathrm{~m}+1 \mathrm{e}$ |  |

NCEA Level 3 Physics (91524) 2023 — page 1 of 5

| Q | Evidence | Achievement | Merit | Excellence |
| :---: | :---: | :---: | :---: | :---: |
| THREE <br> (a) | - Gradient represents $\omega^{2}$ where $\omega=2 \pi f$. <br> - Gradiant is proportional to $f^{2}$ because $\omega=2 \pi f$. <br> - So gradient of graph is $4 \pi^{2} f^{2}$. <br> - Because graph is linear / gradient is constant then the frequency must be constant . | - Any one bullet point. |  |  |
| (b) | Calculate gradient, determine $\omega$ and therefore use $\omega=2 \pi f=\frac{2 \pi}{T}$. $\begin{aligned} & \text { Gradient }=\frac{20}{0.02}=1000 \text { this is } \omega^{2} . \\ & \begin{aligned} \omega & =31.2 \mathrm{rads}^{-1} \\ \quad & =2 \pi f=\frac{2 \pi}{T} \\ T & =0.1986 \end{aligned} \end{aligned}$ <br> Then substitute in to $T=2 \pi \sqrt{\frac{m}{k}}$ $m=0.0246 \mathrm{~kg}$ | - EITHER show working for $T$. <br> Correct calculation of gradient. <br> OR Ccalculation of $m$. | - Correct show for $T$ and correct answer for $m$. |  |


total angle $=90+23.6=113.6^{\circ}$
It takes 0.199 s to do $360^{\circ}$, so for $113.6^{\circ}$, it takes
$\frac{113.6}{360} \times 0.199=0.0628 \mathrm{~s}$
Accept other solutions / methods that are reasonable.

- Correct diagram on reference circle.
OR
Correct angle of $23.6^{\circ}$.
OR
Correct $\omega$.
- One error in calculation. If use alternative method, with minor error.
OR
Calculator in degrees.
(d) This is called damping.

The period stays the same, but the amplitude decreases as energy is lost to the surroundings in the form of heat due to friction.


Max amplitude $=0.100 \mathrm{~m}$ marked on $y$-axis. (Cosine curve starting at either +A or -A)
(Decay envelope shape.)
Three cycles
$\mathrm{T}=0.199 \mathrm{~s}$

- ONE correct aspect:

This is called damping
OR
Energy lost to surroundings due to friction (resulting in a loss of amplitude.)
OR
Correct cosine shape showing decreased amplitude over 3 cycles.
OR
3 cycles with constant time periods.

- THREE of:
- Damping.
- Energy lost to surroundings in the form of energy due to friction, (resulting in a loss of amplitude.)
- Correct cosine shape showing decreased amplitude over 3 cycles.
- 3 cycles with constant time periods.
- Correct labels and values on axes for amplitude and period.
- ALL of:
- Damping.
- Energy lost to surroundings in the form of due to friction, (resulting in a loss of amplitude.)
- Correct cosine shape showing decreased amplitude over 3 cycles.
- 3 cycles with constant time periods.
- Correct labels and values on axes for amplitude and period.

| NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No relevant evidence. | 1 a | $\begin{aligned} & 2 \mathrm{a} \\ & 1 \mathrm{~m} \end{aligned}$ | $\begin{gathered} 3 \mathrm{a} \\ 1 \mathrm{a}+1 \mathrm{~m} \\ 1 \mathrm{e} \end{gathered}$ | $\begin{gathered} 4 \mathrm{a} \\ 2 \mathrm{a}+1 \mathrm{~m} \\ 1 \mathrm{a}+1 \mathrm{e} \end{gathered}$ | $\underset{1 \mathrm{~m}+1 \mathrm{e}}{2 \mathrm{e}}$ | $\begin{gathered} 3 \mathrm{~m} \\ 2 \mathrm{e} \end{gathered}$ | $\begin{gathered} 1 a+1 m+1 e \\ 2 m+1 e \\ 1 a+2 e \end{gathered}$ | $\begin{aligned} & 1 \mathrm{~m}+2 \mathrm{e} \\ & 2 \mathrm{a}+2 \mathrm{e} \end{aligned}$ |

Cut Scores

| Not Achieved | Achievement | Achievement with Merit | Achievement with Excellence |
| :---: | :---: | :---: | :---: |
| 0-6 | 7-12 | 13-18 | 19-24 |

