Assessment Schedule – 2024

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	\vdots	• Two Lewis structures OR two shapes.		
(b)	There are four regions of electron density around the central Si atom in SiH ₄ . These repel to maximum separation, resulting in minimum repulsion with bond angles of 109.5°. All regions are bonded; therefore both the arrangement and the final shape are tetrahedral. By comparison, HNO only has three regions of electron density around the central N atom. These repel to maximum separation, resulting in minimal repulsion and a trigonal planar arrangement with bond angles of 120°. Of these three regions, two are bonded and one has a lone pair of electrons; therefore the final shape of the molecule is bent. The final shape is different to the arrangement for HNO due to the presence of lone pairs around the central atom.	 Identifies the correct number of bonding and lone pairs / non-bonding regions for one molecule. OR Recognises electron density regions are arranged in positions of maximum separation / minimum repulsion. OR States correct bond angles for one molecule. 	• Links total number of areas of electron density around the central atom to arrangement / parent geometry and bond angle for ONE molecule using repulsion theory.	• Explains bond angles and shapes of BOTH molecules by referring to regions of electron density, repulsion theory and bonding AND non- bonding electron areas / lone pairs.

(c)i (ii)	Both molecules are polar. Both molecules contain polar bonds due to a difference in electronegativity of the atoms involved in the bond. H ₂ S has two polar bonds and two lone pairs. Therefore, the molecule is bent, but the dipoles are asymmetrically arranged. Consequently, the bond dipoles do not cancel out, resulting in the molecule being polar. HCN is a linear, symmetrical molecule; however the bond dipoles are not equal, and therefore cannot cancel out despite the symmetry of the molecule, hence the dipole reinforces. Therefore, the molecule is polar.	 Correctly identifies polarity. Identifies a difference in electronegativity between atoms in bonds. 	 Links asymmetry of H₂S molecule to non-cancellation / reinforcement of dipole in this molecule. Links relative strength of polar bonds to non-cancellation / reinforcement of dipole in HCN molecule, despite symmetry. 	• Correctly justifies polarity of BOTH molecules with reference to electronegativity differences between atoms in bonds, bond polarity, and symmetry of dipole arrangement.
(d) (i)	$n(CH_3NH_2) = \frac{1890}{158} = 11.962 \text{ mol}$ $m = n \times M$ $m = 11.962 \times 31.0 = 370.82 \text{ g} (371 \text{ g} 3 \text{ s.f.})$	• One step correct.	• Correct answer for (i) OR (ii).	 Correct answer for (i) AND (ii). (Δ_rH position and value needed.
(ii)	Energy $\Delta_r H = -158 \text{ kJ}$ $CH_3 NH_2(g)$ Reaction proceeds	• Identifies correct energy diagram by partially, but correctly labelling with either $\Delta_r H$ position (value not needed) or reactants and products.		
	Reaction proceeds			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e	3e

Q Evidence	Achievement	Merit	Excellence
------------	-------------	-------	------------

NCEA Level 2 Chemistry (91164) 2024 — page 3 of 7

TWO (a)	Solid	Melting point (°C)	Type of solid	Type of particle	Attractive forces between particles		• Two rows correct. OR	• Whole table correct	
	SiO ₂ (s) (silicon dioxide)	1700	3D covalent network	atoms	covalent bonds		Two columns correct.		
	SiCl ₄ (<i>s</i>) (silicon tetrachloride)	-69	molecular	molecules	weak intermolecular forces				
	CuCl ₂ (s) (copper (II) chloride)	620	ionic	ions	ionic bonds				
	Al(s) (aluminium)	660	metallic	metal atoms / metal cations and delocalised electrons	metallic bonds				
(b)	SiO ₂ is a 3D cov by strong covale of energy are re- order to melt; th Whereas SiCl ₄ i SiCl ₄ . Within th between these S of attraction hol amount of energy melting point is The difference i in the strength o	valent net ent bonds quired to terefore t s a molec ese mole tiCl4 mole ding ther gy is requ significa n melting of the attr	twork solid s, making it break / ove he temperat cular substat cules there ecules, there n together. 7 ired to brea ntly lower. g point of th active force	made of Si a very rigid ar rcome the st ure of the mo- nce, made of are strong co e are only we Therefore, or k these weak ese substanc s between pa	nd O atoms ad strong. La rong covaler elting point i à discrete mo valent bonds eak intermole nly a relative a forces, and es is due to to urticles.	held together rge amounts at bonds in s high. lecules of s; however, ecular forces ely small hence its the differences	 Identifies melting point is related to strength of attractive forces in either example. OR Identifies that forces between particles must be broken for a solid to melt. Describes structure of either substance. 	• Links strength of forces between particles to the energy requirement (for temperature) of melting point for ONE substance.	• Links structure and bonding in each substance to the difference in temperature required for melting.

(c)	The Si–Cl bonds are polar and arranged symmetrically; therefore the SiCl4 molecule is non-polar. Water is a polar molecule with partially positive H atoms and a partially negative O atom due to the polar O–H bonds. The attractive forces between water molecules are relatively strong, compared to those between SiCl4 molecules. The strength of the attractive forces between the non-polar solute (SiCl4) and the polar solvent (H ₂ O) are not sufficient to overcome the existing strength of attractive forces between H ₂ O molecules or between SiCl4 molecules. SiCl4, being non-polar, would be expected to dissolve in a non-polar solvent. As the attractive forces between SiCl4 molecules are similar to the attractive forces between molecules of non-polar solvents, they can replace each other; therefore SiCl4 could dissolve. Copper(II) chloride is an ionic compound. When placed in the polar water, the partially negative O atom of water molecules attract the negative copper (Cu ²⁺) ions, and the partially positive H atoms attract the negative chloride (Cl ⁻) ions. The strength of this attractive force is strong enough to overcome the ionic bonds within the CuCl ₂ ionic lattice and the force of attraction between water molecules, allowing CuCl ₂ to dissolve.	 Identifies SiCl₄ as non-polar and water as polar. OR Identifies SiCl₄ would dissolve in a non-polar solvent. Identifies attractions are required between water and the solute / SiCl₄ / CuCl₂, for it to dissolve. 	 Links relative strength of attractive forces between solute and solvent particles to solubility for ONE solute. Links polarity to solubility / relative strength of attractive forces between solute and solvent particles for ONE solute. 	 Justifies solubility of SiCl4 with reference to polarity, relative strength of attractive forces, and need to overcome existing forces. AND Includes reason for why SiCl4 would be expected to dissolve in a non- polar solvent. Explains solubility of CuCl2, with reference to polarity, relative strength of attractive forces, and need to overcome existing forces. AND Use of diagram to illustrate CuCl2 answer
-----	--	---	---	---

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e	3e

NCEA Level 2	Chemistrv	(91164)	2024 —	- page 5 of 7
	errorner,	(01101)		page e er i

Evidence	Achievement	Merit	Excellence
$n(\text{propane}) = \frac{1000}{44.1} = 22.676 \text{ mol}$ Energy = 22.676 × $\frac{-2044}{1}$ = -46349.206 kJ 46300 kJ released (3sf) Accept 46500 kJ if working shows use of 44 g mol ⁻¹ from periodic table molar mass values. $n(\text{butane}) = \frac{1000}{58.1} = 17.212 \text{ mol}$ Energy = 17.212 × $\frac{-2877}{2}$ = -24759.036 kJ 24800 kJ released (3sf) Same rounded answer using M of 58 g mol ⁻¹ from periodic table molar mass values.	• One step of process correct, eg. moles of either or used 1 or 100 instead of 1000.	• Either part (i) or (ii) correct.	• Calculates how much more energy is produced by propane, uses correct process for all calculations and units.
Difference 46 300 – 24 800 = 21500 kJ more released from propane per kg OR Raw values 46 349.206 – 24 759.036 = 21 590.17 kJ (21 600 kJ, 3sf) OR Accept 46 500 – 24 800 = 21 700 kJ if working shows use of periodic table molar mass values			
	Evidence $n(\text{propane}) = \frac{1000}{44.1} = 22.676 \text{ mol}$ Energy = 22.676 × $\frac{-2044}{1}$ = -46 349.206 kJ 46 300 kJ released (3sf) Accept 46 500 kJ if working shows use of 44 g mol ⁻¹ from periodic table molar mass values. $n(\text{butane}) = \frac{1000}{58.1} = 17.212 \text{ mol}$ Energy = 17.212 × $\frac{-2877}{2}$ = -24 759.036 kJ 24 800 kJ released (3sf) Same rounded answer using M of 58 g mol ⁻¹ from periodic table molar mass values. Difference 46 300 - 24 800 = 21500 kJ more released from propane per kg OR Raw values 46 349.206 - 24 759.036 = 21 590.17 kJ (21 600 kJ, 3sf) OR Accept 46 500 - 24 800 = 21 700 kJ if working shows use of periodic table molar mass values.	EvidenceAchievement $n(\text{propane}) = \frac{1000}{44.1} = 22.676 \text{ mol}$ • One step of process correct, e.g. moles of either or used 1 or 100 instead of 1000.Energy = 22.676 $\times \frac{-2044}{1} = -46349.206 \text{ kJ}$ 46 300 kJ released (3sf)Accept 46 500 kJ if working shows use of 44 g mol ⁻¹ from periodic table molar mass values.in 100 instead of 1000. $n(\text{butane}) = \frac{1000}{58.1} = 17.212 \text{ mol}$ Energy = 17.212 $\times \frac{-2877}{2} = -24759.036 \text{ kJ}$ 24 800 kJ released (3sf) Same rounded answer using M of 58 g mol ⁻¹ from periodic table molar mass values.molar mass values.Difference 46 300 - 24 800 = 21500 kJ more released from propane per kg OR Accept 46 500 - 24 800 = 21700 kJ if working shows use of periodic table molar mass values.Single 100 kJ single 100 kJ	EvidenceAchievementMerit $n(\text{propane}) = \frac{1000}{44.1} = 22.676 \text{ mol}$ • One step of process correct, e.g. moles of either or used 1 or 100 instead of 1000.• Either part (i) or (ii) correct.Energy = 22.676 $\times \frac{-2044}{1}$ = -46349.206 kJ• One step of process correct, e.g. moles of either or used 1 or 100 instead of 1000.• Either part (i) or (ii) correct.46 300 kJ released (3st) Accept 46 500 kJ if working shows use of 44 g mol ⁻¹ from periodic table molar mass values.• One step of process correct, e.g. moles of either or used 1 or 100 instead of 1000.• Either part (i) or (ii) correct. $n(\text{butane}) = \frac{1000}{58.1} = 17.212 \text{ mol}$ • Either part (i) or (ii) ecopt 45 500 kJ if working shows use of 44 g mol ⁻¹ from periodic table molar mass values.• One step of process correct, e.g. moles of either or used 1 or 100 instead of 1000.Difference 46 300 - 24 800 = 21500 kJ more released from propane per kg OR Accept 46 500 - 24 800 = 21 500 kJ if working shows use of periodic table molar mass values.• Hort if working shows use of periodic table molar mass values.

(b)	Bonds broken: $2 \times H-H = 2 \times 436 = 872$ $1 \times O=O = 498$ Total: 1370 Bonds formed: $4 \times O-H = 4x$ Total: 4x $\Delta_r H = \Sigma_{bonds \ broken} - \Sigma_{bonds \ formed}$ -484 = 1370 - 4x 4x = 1370 + 484 4x = 1854 $x = 1854 \div 4$ $x = 463.5 \ \text{kJ mol}^{-1}$ O-H bond enthalpy is 464 kJ mol ⁻¹ (3sf)	 Correctly calculates total bonds broken (1370). OR Gives a total for bonds formed (4x). 	• Correct process with minor error.	• Correct answer with units and 3SF
(c)(i)	To conduct electricity, a substance must contain free-moving charged particles.	• Correct definition.		
(ii)	Al is a metallic solid, made up of metal atoms / cations in a 3D lattice with delocalised valence electrons, held together by non-directional strong metallic bonds. These delocalised electrons are both free-moving and charged particles, which results in Al being a conductor of electricity. Therefore, Al is a good choice for overhead power lines transporting electricity and / or electrical components in devices. The Al atoms / cations are arranged in layers held together by delocalised valence electrons. When a force is applied, the layers can slide over one another, due to the non-directional metallic bonding. This enables Al to be reshaped under force without breaking its bonding or damaging its structure; hence it is malleable. Therefore, Al is a good choice for shaping protective shells for smartphones and laptops.	 Describes the structure of a metallic solid. Identifies non-directional bonds required for malleability. 	 Links conductivity to presence of delocalised valence electrons. Links malleability to non-directional metallic bonds allowing particles to move without breaking these bonds. 	• Comprehensively explains both conductivity and malleability of aluminium and links it to their suitability for the uses stated.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	la	2a	3a	4a	3m	4m	2e	Зе

Cut Scores

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 07	08– 13	14 – 18	19 – 24	