Assessment Schedule – 2024

Mathematics and Statistics: Apply algebraic methods in solving problems (91261) Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$(x+4)^2 - 5 - 16$ $(x+4)^2 - 21$	• Written in correct form.		
(b)	$3x^{2} - 5x + 2 = 0$ $b^{2} - 4ac = (-5)^{2} - 4(3)(2)$ = 1	• Correct value but beware of RAWW.		
(c)	$\frac{3t+3(t-5)-t}{3t^2} = \frac{3t+3t-15-t}{3t^2}$ $= \frac{5t-15}{3t^2}$	• Obtains a correct expression by putting 2 fractions over the same denominator and simplifying the numerator.	• Full simplification.	
(d)	(3x-1)(x-4)(x+2) = 0 $(3x-1)(x^2-2x-8) = 0$ $3x^3-6x^2-24x-x^2+2x+8 = 0$ $3x^3-7x^2-22x+8 = 0$ So, $a = -7, b = -22, c = 8.$	 Identifies the 3 correct factors. OR Uses y (any root) = 0 	• Finds values for <i>a</i> , <i>b</i> , and <i>c</i> . Explicit statement not required.	
(e)	$\frac{x^2 - x + x - 1}{x^3 - x^2 - x^2 + x} = \frac{x^2 - 1}{x(x^2 - 2x + 1)}$ $= \frac{(x + 1)(x - 1)}{x(x - 1)(x - 1)}$ $= \frac{x + 1}{x(x - 1)}$	• Correct expansion of either numerator or denominator.	• Factorisation of either numerator or denominator (2nd line of working).	T1 Derives result but with incorrect mathematical statements. T2:Mathematically correct proof.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1u	2u	3u	lr	2r	lt	2t

NCEA Level 2 Mathematics and	Statistics (91261) 2024 — page 2 of 4
	01201201	/2021 pugo 2011

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$3x^{2} - 14x - 5 = 0$ (3x + 1)(x - 5) = 0 $x = -\frac{1}{3} \text{ or } 5$	• Both solutions found.		
(b)	$\frac{\sqrt{(3x+5)^2}}{x(5+3x)} = \frac{3x+5}{x(3x+5)} = \frac{1}{x}$	• Factorising the surd.	• Simplified.	
(c)	$\frac{x^2 - 2x}{4x - 1} = \frac{k - 1}{k + 1}$ (x ² - 2x)(k + 1) = (k - 1)(4x - 1) x ² k + x ² - 2kx - 2x = 4xk - k - 4x + 1 (k + 1)x ² + (2 - 6k)x + (k - 1) = 0 Equal and opposite signs so, 2 - 6k = 0 $k = \frac{1}{3}$ Other valid approaches are also acceptable.	• Expand to remove denominator on both sides giving line 3.	 Expand and simplify to reach line 4. OR Other clearly valid approach with minor numerical error. 	• Value of <i>k</i> found.
(d)(i)	Radius = $\frac{x}{4}$ Area = $\pi \left(\frac{x}{4}\right)^2$ = $\frac{\pi x^2}{16}$	• Correct expression (accept line 2).		
(ii)	Green area = area of rectangle - 2 (area of circle) $= \frac{x^2}{2} - \frac{2\pi x^2}{16} \qquad \text{OR} = 8r^2 - 2(\pi r^2)$ $= \frac{x^2(4-\pi)}{8} = 10 \qquad 8r^2 - 2\pi r^2 = 10$ $x^2 = \frac{80}{4-\pi} \qquad r^2 = \frac{10}{8-2\pi}$ $x = \sqrt{93.196} = 9.65 \text{ cm} \qquad r = \sqrt{5.825} = 2.4134$ $\therefore x = 9.65 \text{ cm}$		• Correct expression for green area in terms of either <i>x</i> or <i>r</i> (not both).	Correct value for length of rectangle.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A valid attempt at one question.	1u	2u	3u	lr	2r	1t	2t

NCEA Level 2 Mathematics and Statistics	(91261) 2024 — page 3 of 4
---	----------------------------

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	$x = \log_5 625$ $5^x = 625$ x = 4	• Correct answer.		
(b)	$3^{2(2x+3)} = (3^{-3})^{x}$ $4x + 6 = -3x$ $7x = -6$ $x = -\frac{6}{7}$ OR $2x + 3 = \log_{9}(9^{-1.5x}) = -1.5x$ $4x + 6 = 3x$ $7x = -6$ $x = -\frac{6}{7}$	 Rewrites at least one term as a power with base 3. OR Takes logs and movers exponent out of log for at least 1 term. 	• Solved correctly.	
(c)	b2 = x and (3b)2 = y y = 9b2 y = 9x	• Rewrite at least one of the log terms in exponential form.	Correct answer.	
(d)	$x = \frac{-(-4k) \pm \sqrt{(-4k)^2 - 4(3)(k^2)}}{2(3)}$ = $\frac{4k \pm \sqrt{16k^2 - 12k^2}}{6}$ = $\frac{4k \pm \sqrt{4k^2}}{6}$ = $\frac{4k \pm 2k}{6}$ $x = k \text{ or } \frac{k}{3}$	• Substitutes into the quadratic formula and evaluates the <i>b</i> ² term.	• Finds both solutions (simplest form of last line not required).	
(e)	Let P_c = intensity of cooling fan P_h = intensity of heat pump Cooling fan: $38 = 10 \log \left(\frac{P_c}{P_0}\right)$ $P_c = 10^{3.8} P_0$ Heat pump: $30 = 10 \log \left(\frac{P_h}{P_0}\right)$ $P_h = 10^3 P_0$ $\frac{P_c}{P_h} = 10^{0.8} = 6.31 > 6$ Hence it is more than six times higher.		• Intensity of either cooling fan or heat pump in terms of P_0 . Accept expressions for $\frac{P}{P_0}$.	T1: Finds that heat pump is 6.3 times more intense.T2: Explicitly compares 6.31 to the 6 given in the question.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
----	----	----	----	----	----	----	----	----

NCEA Level 2 Mathematics and Statistics	s (91261) 2024 — page 4 of 4
---	------------------------------

				-	-			
No response; no relevant evidence.	A valid attempt at one question.	1u	2u	3u	lr	2r	1t	2t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 07	08 – 13	14 – 19	20 – 24