Assessment Schedule – 2024

Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE	The ITCZ forms near the Equator and is characterised by rising warm air, cloud formation, higher rainfall, and weak surface winds. Differential heating due to Earth's curvature causes more direct insolation, intense heating, and higher temperatures and at the Equator. The Hadley cells form between the Equator / ITCZ and 30°N / S. Warm surface air heated via radiation (and conduction) expands, becomes more byouant / less dense, and rises in the troposphere, leaving a low pressure zone at the surface. The large volume of rising air reaches the tropopause and diverts north and south. Air cools as it rises and density increases, due to contraction, causing it to sink back down at the 30° latitudes, leading to high pressure at the surface. The cold sinking air moves from high to low pressure, causing surface winds from 30° to the Equator. This air is heated by the surface as it returns to the Equator. This completes convection circulation of the Hadley cell. There is generally very little wind at the ITCZ, as wind converges and rises in this area, which sailors refer to as "the doldrums". Warm air rising at the ITCZ holds large volumes of water vapour, resulting from evaporation in the tropics, due to surface ocean heating by the solar radiation and trade winds converging. Rising humid air will cool adiabatically until it reaches dew point temperature, upon which water vapour will condense to form droplets. This is responsible for the formation of the cloud bank at the ITCZ. The phenomenon is permanent as Hadley cell circulation is continuous. The ITCZ moves north and south), between different seasons. During summer, when the Southern Hemisphere is tilted towards the Sun, solar radiation towards the south and associated shift in the ITCZ. During the Southern Hemisphere winter, the ITCZ moves north and south, between and the concentrated over a small surface area. This causes a shift in Hadley cell formation towards the south and associated shift in the ITCZ. Is closer to the Equator.	 Describes with understanding: winds weak at ITCZ / most airflow up high rainfall / cloud common in ITCZ more intense heating / warmer near Equator warm air rising AND cold air sinking / a convection cell rising air leaves low pressure / sinking air → high pressure surface wind from high to low pressure more evaporation due to direct heating warm rising air transports water vapour vapour condenses to form water droplets / clouds ITCZ moves north and south with Sun. 	 Explains in detail: formation of ITCZ / Hadley cell due to the angle of solar insolation / atmosphere heating processes circulation due to temperature OR pressure differences in the Hadley cell formation of high and low pressure bands on surface causing wind from 30° to ITCZ winds at ITCZ weak (doldrums) as converging and rising in Hadley cell cloud formation processes at ITCZ (evaporation, cooling, and condensation) changes in angle of insolation cause shift in ITCZ position. 	 Discusses comprehensively: formation of Hadley cell and surface winds due to solar insolation, temperature and pressure gradients formation of permanent cloud bank at ITCZ due to continuous Hadley cell updraught and water cycle processes shift in ITCZ accurately linked to seasons AND shift of more direct insolation / angle.

NCEA Level 3 Earth and Space Science (91414) 2024 - page 2 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE point from	TWO points from	THREE points from	FOUR points from	ONE point from	TWO points from	ONE point from	TWO points from
	Achievement.	Achievement.	Achievement.	Achievement.	Merit.	Merit.	Excellence.	Excellence.

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
TWO	 The greenhouse effect originates when greenhouse gases (GHG) in the atmosphere trap heat, creating a layer that warms the atmosphere. Image: the surface absorbs short-wave solar radiation and re-emits the energy as long-wave / IR radiation (heat). GHG absorb this heat and re-emit it back into the atmosphere, towards the surface, out to space, or towards other greenhouse gas molecules. GHGs cause an increase in atmospheric temperature and provide a comfortable temperature for life to exist on Earth. GHGs include CO₂ and CH₄. These occur naturally in the atmosphere, due to volcanic outgassing, wetlands and other natural processes, but human activities. Marcease the emissions of these two gases. Fossil fuel combustion (coal / oil / gas) for energy production (transport and electricity) is responsible for carbon dioxide emissions, contributing 40% of NZ annual emissions, adding carbon. Agriculture accounts for 49% of carbon emissions in New Zealand. This includes methane, resulting from livestock farming, e.g. cattle and sheep releasing methane during digestion. (Agriculture also releases nitrous oxide from fertilisers and urine.) Methane is also released GHG, mainly via combustion. Decomposers break down organic waste and release carbon compounds into the atmosphere (CO₂ and methane). Increasing GHGs in the atmosphere causes additional heat to be trapped in the atmosphere, increasing global average temperatures. However, due to variations in climate, some areas may experience more extreme temperatures (hotter and / or colder than normal) as the global average temperature increases. Carbon dioxide remains in the atmosphere for a long time (300–1000 years), while methane only remains for 12 years, but is then broken down to CO₂, thus having a longer-term warming effect. Methane also has a greater warming potential than carbon dioxide, which means 1 kg of methane will warm the atmosphere as much as 28 kg of carbon dioxide. Nearly half of New Zealand's emissions are	 Describes with understanding: greenhouse effect as warming of atmosphere surface absorbs short- wave, but emits long-wave radiation (heat) GHG absorb heat and re- emits it, trapping in the atmosphere combustion of fossil fuels for energy releases CO₂ livestock belching / agriculture releases mainly methane increasing GHG cause increase in atmospheric temperature CO₂ lasts longer methane absorbs and releases more energy / heat recognition that a significant portion (half) of NZ emissions are methane another effect on climate (not temp). 	 Explains in detail: GHG's absorb IR / long-wave radiation emitted by the surface TWO carbon-addition processes explained, (incl. source and form of carbon) increasing GHG trap and re-emit more heat, leading to increase in atmospheric temperature two effects of increased GHG on climate methane has greater (short-term) impact on atmospheric temperature / climate with reason comparison between CO₂ (less impact, but longer term) and methane (greater impact over short term). 	 Discusses comprehensively: interaction between radiation (from the Sun and Earth's surface) and GHGs cause greenhouse effect / atmospheric warming sources and effect of emitted GHGs in New Zealand carbon cycle on climate / atmospheric processes comparing lifetime and warming potential of CH₄ and CO₂ and links to agriculture and energy / combustion.

NCEA Level 3 Earth and Space Science (91414) 2024 - page 4 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE point from	TWO points from	THREE points from	FOUR points from	ONE point from	TWO points from	ONE point from	TWO points from
	Achievement.	Achievement.	Achievement.	Achievement.	Merit.	Merit.	Excellence.	Excellence.

Q	F	lvidence	Achievement	Merit	Excellence
THREE	High-pressure systems lead to clear summatemperatures. Air flow brings colder upp However, solar radiation is absorbed by emitted, warming the lower troposphere. absorbing radiation. This causes higher of temperatures. Surface air circulation around a high-pre- anticlockwise, because the Coriolis effect flows along the isobars. As air is sinking condensation and rainfall, causing dry co- isobars, so winds are very weak, because SOUTHERN HEMISPHERE Clockwise and Inward Surface winds are from the west in the ch- Clouds (in low pressure systems) have a radiation, causing less energy to reach th atmospheric temperature. At night, heat the cloud, retaining a higher temperature Additionally, there is a cold front approa pressure system. There is a boundary bet air mass. The cold denser air mass will for precipitation and storms along the front. with stronger wind gusts, but this lasts a	y skies, but large variation in daily er troposphere air towards the surface. the surface during the day, and heat is re- There are no clouds blocking, reflecting, or lay-time temperatures and colder night ssure system in the Southern Hemishere is t causes deflection towards the left and wind , there is no rising humid air, preventing onditions. This system has widely spaced the pressure gradient is weak. In contrast, low-pressure systems are centred on a rising column of warm air, likely to contain water vapour. As the humid air rises, it will cool and condense, forming clouds and precipitation. Air flow around these systems is clockwise at the surface (deflected left towards the centre). Wind directions follow the isobars and are strong, as the pressure gradient is strong (closer spaced isobars). As air flow is clockwise around the system, nart. high albedo and reflect incoming solar e surface. This causes a decrease in surface radiated from Earth is absorbed and reflected by . This causes a smaller range in temperature. ching from the south-west present in the low- ween a cold incoming air mass and a warmer orce the warmer air mass to rise, causing There is also a drop in temperature, associated short period as cold fronts move fast.	 Describes with understanding: high pressure associated with sunny, clear conditions low pressure associated with cloud and precipitation effect of cloud cover on solar insolation / temperatures high pressure airflow anticlockwise low-pressure airflow clockwise identifies an accurate wind direction for the North Island (W) or South Island (SW) wind stronger when isobars closer / P gradient greater front is a boundary between two different air masses OR warm air mass rises over cold air mass at a front Air rises in LP / sinks in HP Cold front associated with drop in temp / stronger wind / heavy rain Warm front associated with increasing temp / lighter rain 	 Explains in detail: sinking air in high pressure prevents condensation, thus clear skies, while low pressure opposite rising air in low pressure leads to warm moist air cooling and condensation / cloud formation effect of cloud cover on solar insolation / temperatures with reason wind around both pressure systems determined by Coriolis, deflecting air to left in Southern Hemisphere wind direction follows isobars and strength depends on spacing / pressure gradient cold front ahead of cold air mass will force warm air mass to rise, causing precipitation. 	 Discusses comprehensively: variation in clouds, insolation, and temperature in both systems circulation directions and wind strengths for both systems related to Coriolis isobars modifications to weather conditions, due to cold OR warm fronts (cloud / precipitation, temperature, wind & air mass directions).

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE point from	TWO points from	THREE points from	FOUR points from	ONE point from	TWO points from	ONE point from	TWO points from
	Achievement.	Achievement.	Achievement.	Achievement.	Merit.	Merit.	Excellence.	Excellence.

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 13	14 – 18	19 – 24