Assessment Schedule – 2024

Physics: Demonstrate understanding of mechanical systems (91524)

Evidence

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	$v = r\omega$ $0.850 = 0.007\omega$ $\omega = 121.429$ $\omega = 121 \text{ rad s}^{-1}$	• Correct answer.		
(b)	$F_{\rm w} - F_{\rm R} \text{ provides } F_{\rm c}.$ At max speed $F_{\rm R} = 0$ $mg = \frac{mv^2}{r}$ 9.81(0.0350) = v^2 v = 0.58596 $v = 0.586 \text{ m s}^{-1}$	• $F_{\rm R} = 0$ $F_{\rm w}$ provides $F_{\rm c}$.	• Correct answer.	
(c)	 <i>F</i>_{net} provides <i>F</i>_c In both positions, <i>F</i>_w is downwards and remains constant. At position X: <i>F</i>_c is directed upwards towards the centre of the circle. F_R is directed upwards and must be larger than <i>F</i>_w to provide <i>F</i>_c. As <i>F</i>_w is directed away from the centre of the circle, <i>F</i>_c = <i>F</i>_R - <i>F</i>_w. At position Y: <i>F</i>_c is directed upwards towards the centre of the circle. F_R is directed upwards towards the centre of the circle. At position Y: <i>F</i>_c is directed upwards and must be smaller than <i>F</i>_w for <i>F</i>_w to provide <i>F</i>_c. As <i>F</i>_w is directed upwards and must be smaller than <i>F</i>_w for <i>F</i>_w to provide <i>F</i>_c. 	 ONE of: <i>F</i>_{net} provides <i>F</i>_c <i>F</i>_c at X is greater than <i>F</i>_c at Y <i>F</i>_w down, <i>F</i>_R up at X and Y <i>F</i>_w constant is stated <i>F</i>_c = <i>F</i>_R - <i>F</i>_w (at X) <i>F</i>_c = <i>F</i>_w - <i>F</i>_R (at Y) Correct free-body force diagram for one position. <i>F</i>_{R(X)} is greater that <i>F</i>_{R(Y)} 	 One position explained (incl. link to and direction of <i>F</i>_{net}) OR Relative sizes and directions of <i>F</i>_R and <i>F</i>_g described at both positions. <i>An accurate free-body force diagram may be used as part of the evidence.</i> 	• Full answer. An accurate free- body force diagram may be used as part of the evidence.

NCEA Level 3 Physics (91524) 2024 — page 2 of 6

(d)	Method (a) $E_{GP} = E_{k(lin)} + E_{k(rot)}$ $mgh = \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2}$ $mgh = \frac{1}{2}mv^{2} + \frac{1}{2}\left(\frac{2}{5}mr^{2}\right)\left(\frac{v}{r}\right)^{2}$ $gh = \frac{1}{2}v^{2} + \frac{1}{5}v^{2}$ $gh = \frac{7}{10}v^{2}$ $h = \frac{7v^{2}}{10g}$ $h = \frac{7(0.58596)^{2}}{10(9.81)}$ $h = 0.0245 \text{ m}$	Method (b) $I = 219.52 \times 10^{-9}$ $v = r\omega$ $0.58596 = 0.007\omega$ $\omega = 83.70867$ $E_{k(rot)} = \frac{1}{2}I\omega^{2}$ $E_{k(rot)} = \frac{1}{2}(219.52 \times 10^{-9}) 83.709^{2}$ $E_{k(rot)} = 769.1 \times 10^{-6}$ $E_{k(lin)} = \frac{1}{2}mv^{2}$ $E_{k(lin)} = \frac{1}{2}0.0112(0.58596)^{2}$ $E_{k(lin)} = 0.00192276$ $mgh = E_{T}$ 0.0112(9.81)h = 0.00269186 h = 0.0245 m	 Attempts to solve using conservation of energy. E_{GP} = E_{k(lin)} + E_{k(rot)} ONE correct energy calculation: E_{k(lin)} = 1.92276×10⁻³ J E_{k(rot)} = 7.69104×10⁻⁴ J ω = 83.70867 rad s⁻¹ 	• One error in correct process. E.g. Method (a). attempts simplification $mgh = \frac{1}{2}mv^2 + \frac{1}{2}\left(\frac{2}{5}mr^2\right)\left(\frac{v}{r}\right)^2$ Method (b). TWO correct energy calculations of $E_{\text{GP}}, E_{\text{k(lin)}}, E_{\text{k(rot)}}$ (must have attempted all three) OR $h = 7.00 \times 10^{-3} \text{ m}$	• Correct answer.
-----	---	---	---	--	-------------------

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	la	2a 1m	3a 1a + 1m 1e	4a 2a + 1m 1a + 1e	2m 3a + 1m 2a + 1e	3m 1m + 1e 1a + 2m	1a + 1m + 1e $2m + 1e$ $2e$	1m + 2e $2a + 2e$

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$a = r\alpha$ $1.83 = 0.11\alpha$ $\alpha = 16.6363$ $\alpha = 16.6 \text{ rad s}^{-2}$	• Correct answer and substitution.		
(b)	$d = r\theta$ 0.75 = 0.11 θ $\theta = 6.8181818$ $\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha\theta$ $\omega_{f}^{2} = 0^{2} + 2(16.6363)(6.81818)$ $\omega_{f} = \sqrt{226.86}$ $\omega_{f} = 15.1 \text{ rad s}^{-1}$	• Correct angular displacement. OR $v_{\rm f} = 1.6568 \text{ m s}^{-1}$ OR Correct $\omega_{\rm f}$ for incorrect θ .	• Correct answer, OR Alternatively calculates $v_f^2 = 0^2 + 2(1.83)(0.75)$ $v_f = 1.6568$ $v = r\omega$ $1.6568 = 0.11\omega$ $\omega = 15.0618$	
(c)	$\tau = Fd$ $\tau = (mg - ma)d$ $\tau = (0.046)(9.81 - 1.83)(0.11)$ $\tau = 0.0403788$ $\tau = I\alpha$ 0.0403788 = I(16.6363) $I = 0.00243 \text{ kg m}^2$	 Tension force identified (may be in diagram). Uses τ = Fd OR Uses τ = Iα 	• One error. E.g. uses mg rather than tension to calculate $I = 2.9838 \times 10^{-3}$ N m	• Correct answer.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	la	2a 1m	3a 1a + 1m 1e	4a 2a + 1m 1a + 1e	2m $3a + 1m$ $2a + 1e$	3m 1m + 1e 1a + 2m	1a + 1m + 1e $2m + 1e$ $2e$	1m + 2e 2a + 2e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	$\alpha \propto -y$, $F_{\text{rest}} \propto -y$ The restoring force / acceleration is proportional to the displacement from the equilibrium position AND the restoring force / acceleration acts toward the equilibrium position / is in the opposite direction to displacement.	• Both points. OR Equation.		
(b)	$\omega = 2\pi f$ $\omega = \frac{2\pi}{0.882}$ $\omega = 7.1238$ $y = A\cos\omega t$ $y = 0.04\cos(7.1238(1.2))$ y = -0.025602 y = -0.0256 m	• Correct value for angular frequency.	• Minor mistake.	• Correct answer.
(c)	uoijisod T T Z T 3 T 4 T 5 T time	 One of: Exponential decay. y starts at max A. T constant. 	• Correct answer.	

(d)	As the ball bearing oscillates, E_{gp} transforms to E_k and vice versa / at any point, $E_{total} = E_{gp} + E_k$. Over time, (kinetic) energy is lost from the system as heat due to friction, therefore, total energy is decreases. A decrease in total energy / kinetic energy means that maximum gravitational potential energy decreases (causing the maximum height to decrease) and so the amplitude will decrease. This is known as damping.	 One of: Loss of energy due to friction. Amplitude decreases. Damping. 	 Damping AND (kinetic) energy is lost from the system as heat due to friction OR Links less E_{total} / E_k to less E_{gp} so smaller amplitude. 	Full answer.
-----	---	--	---	--------------

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	la	2a 1m	3a 1a + 1m 1e	4a $2a + 1m$ $1a + 1e$	2m $3a + 1m$ $2a + 1e$	3m 1m + 1e 1a + 2m	1a + 1m + 1e $2m + 1e$ $2e$	1m + 2e 2a + 2e

Cut Scores

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 06	07 – 13	14 – 18	19 – 24	