Assessment Schedule – 2024

Calculus: Apply differentiation methods in solving problems (91578)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$f'(x) = -18x^3(4 - 9x^4)^{-\frac{1}{2}}$ Or equivalent	Correct derivative.		
(b)	$\frac{dy}{dx} = (2x+3)\sin x + (x^2+3x+2)\cos x$ $x = 0 \text{ gives } \frac{dy}{dx} = 2$	Correct gradient of tangent, with correct derivative.		
(c)	Decreasing, therefore $6(2x-7) \times 2 + \frac{60}{x} + 0 < 0 (1)$ $24x-84 + \frac{60}{x} < 0$ $24x^2 - 84x + 60 < 0$ $2x^2 - 7x + 5 < 0$ $(2x-5)(x-1) < 0$ $1 < x < 2.5$	Evidence of reaching stage (1). Can set = 0 and find the correct critical values for (u).	• Finds the correct inequality for required values of x for decreasing function, with evidence of derivative.	
(d)	$\frac{dy}{dx} = e^{-2x}(4 - 4x)$ $\frac{d^2y}{dx^2} = e^{-2x}(8x - 12)$ Solving $\frac{dy}{dx} = e^{-2x}(4 - 4x) = 0$ gives $x = 1$ Then $x = 1$ gives $\frac{d^2y}{dx^2} = -0.541 < 0$ i.e. Maximum when $x = 1$.	• Correct expression for $\frac{dy}{dx}$.	• Finds $x = 1$ and justifies that this is a maximum using a calculus method, and with evidence of derivative.	

(e)	$\frac{dy}{dx} = 2 + x^{-2} - \frac{2}{x}$ $\frac{d^2y}{dx^2} = -2x^{-3} + 2x^{-2}$ For an inflection, solve $\frac{d^2y}{dx^2} = -2x^{-3} + 2x^{-2} = 0$ $\frac{2}{x^2} = \frac{2}{x^3}$ $2x^3 = 2x^2$ $2x^3 - 2x^2 = 0$ $2x^2(x-1) = 0$ Either $x = 0$ ignore as not valid Or $x = 1$ $x = 1$ gives $y = 1$, i.e. $P = (1,1)$ $x = 1$ gives $\frac{dy}{dx} = 1$ Then equation of tangent is: $y - 1 = 1(x - 1)$	• Correct expression for $\frac{dy}{dx}$.	• Finds $x = 1$, with correct $\frac{dy}{dx} \text{ and } \frac{d^2y}{dx^2}.$	E7 / T1 Consistent equation of tangent, from incorrect P. OR Correct solution but with one minor error. E8 / T2 Correct equation of tangent found.
	y = x			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	T1	Т2

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\frac{dx}{dt} = 6t$ $\frac{dy}{dt} = -\sin t$ $\frac{dy}{dx} = \frac{-\sin t}{6t}$	 Correct expression for dy/dx. dy/dx can be expressed in term of x, y. 		
(b)	$\frac{ds}{dt} = v = \frac{6t+5}{3t^2+5t+2}$ $t = 1 \text{ gives } v = \frac{11}{10} = 1.1 \text{ m sec}^{-1}$ Units not required.	• Correct derivative. AND Correct value for velocity of $v = \frac{11}{10} = 1.1$.		
(c)	$\frac{dy}{dx} = 2x \cdot \cos(x^{2}) + \sin x$ $\frac{d^{2}y}{dx^{2}} = 2\cos(x^{2}) - 2x \cdot 2x\sin(x^{2}) + \cos x$ $\frac{d^{2}y}{dx^{2}} = 2\cos(x^{2}) - 4x^{2}\sin(x^{2}) + \cos x$ Then LHS = $\frac{d^{2}y}{dx^{2}} + 4x^{2}y$ $= 2\cos(x^{2}) - 4x^{2}\sin(x^{2}) + \cos x + 4x^{2}(\sin(x^{2}) - \cos x)$ $= 2\cos(x^{2}) + \cos x - 4x^{2}\cos x$ $= 2\cos(x^{2}) + (1 - 4x^{2})\cos x$ = RHS As required.	• Correct expression for $\frac{dy}{dx}$.	• Correct justification that it is a solution, with evidence of both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	
(d)	$f'(x) = \frac{1 - \ln x}{x^2}$ $f''(x) = \frac{-3 + 2 \ln x}{x^3}$ For inflection $f''(x) = 0$ giving $-3 + 2 \ln x = 0$ $\ln x = \frac{3}{2}$ $x = e^{1.5} = 4.4817$ $y = 1.5e^{-1.5} = 0.3347$ i.e. $(4.4817, 0.3347)$	• Correct expression for $\frac{dy}{dx}$.	• Correct coordinates for point of inflection, with evidence of both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	Т1	Т2

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}\sec 6x + 6x^{\frac{1}{2}}\sec 6x \tan 6x$ Or equivalent.	Correct derivative.		
(b)(i) (ii) (iii)	x = 5 x = 1 and $3 < x < 5$	Two out of three correct responses.		
(c)	$f'(x) = \frac{10x^2 - 40}{(x^2 + 5x + 4)^2}$ For stationary points, $f'(x) = 0$ $10x^2 - 40 = 0$ $x = 2 \text{ or } x = -2$	• Correct expression for $f'(x)$.	• x-values of both stationary points found, with evidence of a calculus method.	
(d)	Method 1: $V = \frac{1}{3}\pi r^2 h = \frac{2}{3}\pi r^3$ $\frac{dV}{dr} = 2\pi r^2$ We require $\frac{dh}{dt} = \frac{dh}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$ $\frac{dh}{dt} = 2 \times \frac{1}{2\pi r^2} \times 3$ $= \frac{3}{4\pi} = 0.2387 \text{ cm sec}^{-1}$	• Correct expression for $\frac{dh}{dt}$.	• Correct value for $\frac{dh}{dt}$, with evidence of a calculus method.	
	OR Method 2: $V = \frac{1}{3}\pi r^2 h = \frac{1}{12}\pi h^3$ $\frac{dV}{dh} = \frac{1}{4}\pi h^2$ We require $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ $\frac{dh}{dt} = \frac{4}{\pi h^2} \times 3$ $= \frac{3}{4\pi} = 0.2387 \text{ cm sec}^{-1}$ Units not required.			

(e)	Let P have coordinates (x, y) Area of triangle $OPQ = xe^{-x^2}$ $\frac{dA}{dx} = e^{-x^2}(1 - 2x^2)$ For max / min, $\frac{dA}{dx} = 0$ $e^{-x^2}(1 - 2x^2) = 0$ Either $e^{-x^2} = 0$ No solutions Or $(1 - 2x^2) = 0$ i.e. $x = \pm \frac{1}{\sqrt{2}} = \pm 0.7071$ But ignore $x = -\frac{1}{\sqrt{2}}$ as $x > 0$ Then area $= \frac{1}{\sqrt{2}} \times e^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{e^{\frac{1}{2}}}$ Area $= \frac{1}{\sqrt{2}e}$ as required.	• Correct expression for $\frac{dA}{dx}$.	• Finding $x = \frac{1}{\sqrt{2}}, \text{ and}$ evidence of ignoring $x = -\frac{1}{\sqrt{2}} \text{ with}$ evidence of a calculus method.	E7 / T1 Correct proof, but with one minor error. E8 / T2 Correct proof of exact area value, with evidence of a calculus method.
-----	--	--	--	---

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	Т1	Т2

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
0 – 07	08– 12	13 – 18	19– 24	