Assessment Schedule – 2024

Calculus: Apply integration methods in solving problems (91579)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$3\sec 2x + c$	• Correct integral + c not required.		
(b)	Area = $\int_{-0.4}^{0} 40x (5x^2 - 3)^3 dx$ = $\left[(5x^2 - 3)^4 \right]_{-0.4}^{0}$ = $[81 - 23.4256]$ = 57.5744 units ²	Correct solution, with evidence of correct integration. Units not required.		
(c)	$d = \int 26.4t^{\frac{1}{3}} dt$ $d = \frac{26.4t^{\frac{4}{3}}}{\frac{4}{3}} + c$ $d = 19.8t^{\frac{4}{3}} + c$ When $t = 0$ and $d = 360$ gives $c = 360$. i.e. $d = 19.8t^{\frac{4}{3}} + 360$ (1) When $v = 264$ gives $t = 1000$ When $t = 1000$ gives $d = 198360$ m.	• Reaching stage (1) of the solution.	Correct solution, with evidence of correct integration. Accept any reasonable rounding. Units not required.	
(d)	$y = \int 24\cos x 3x \sin x dx$ $y = 12 \int \left(\sin 4x - \sin 2x\right) dx$ $y = 12 \left[-\frac{1}{4}\cos 4x + \frac{1}{2}\cos 2x \right] + c$ $y = -3\cos 4x + 6\cos 2x + c$ When $x = \frac{\pi}{3}$ and $y = 6$ gives $c = 7.5$ <i>i.e.</i> $y = -3\cos 4x + 6\cos 2x + 7.5$ When $x = \frac{\pi}{2}$ gives $y = -1.5$	• Correct integration.	• Correct solution, with evidence of correct integration.	

(e)	$A = \int_0^1 3\sec^2 x dx - \int_0^1 2\tan^2 x dx$ $A = 3\left[\tan x\right]_0^1 - 2\int_0^1 \sec^2 x - 1 dx$ $A = 3\left[\tan 1 - \tan 0\right] - 2\left[\tan x - x\right]_0^1$ $A = 3\left[\tan 1 - 0\right] - 2\left[\tan 1 - 1 - 0\right]$ $A = 3\tan 1 - 2\tan 1 + 2$ $A = \tan 1 + 2$ $A = 3.557 \text{ units}^2$ Units not required. Accept any reasonable rounding.	• For either integration correct.	• For both integrations correct.	 E7 Solution with minor error. E8 Correct solution, with evidence of correct integrations.
-----	---	-----------------------------------	----------------------------------	--

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	lu	2u	3u	lr	2r	It with minor error	lt

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\int (9x^8 + 24x^4 + 16) dx$ = $x^9 + \frac{24x^5}{5} + 16x + c$	• Correct integral. + c not required.		
(b)	$3\int_{k}^{16} x^{\frac{1}{2}} dx = 112$ $3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{k}^{16} = 112$ $2\left[x^{\frac{3}{2}}\right]_{k}^{16} = 112$ $64 - k^{\frac{3}{2}} = 56$ $k^{\frac{3}{2}} = 8$ k = 4	• Correct solution, with evidence of correct integration.		
(c)	$\int \frac{1}{y^2} dy = \int 12e^{3x} dx$ $-\frac{1}{y} = 4e^{3x} + c \qquad (1)$ y = 0.5 and x = 0 give c = -6 i.e. $-\frac{1}{y} = 4e^{3x} - 6$ When $x = \frac{1}{3}$ gives $y = \frac{-1}{4e - 6} \approx -0.2052$	• Reaching stage (1) of the solution.	• Correct solution, with evidence of correct integration. Accept any reasonable rounding.	
(d)	Area = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \sin^2 x) dx$ = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - (\frac{1}{2} - \frac{1}{2}\cos 2x)) dx$ = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{1}{2} + \frac{1}{2}\cos 2x) dx$ = $\left[\frac{1}{2}x + \frac{1}{4}\sin 2x\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ (1) = $\frac{\pi}{2}$	• Reaching stage (1) of the solution.	• Correct solution, with evidence of correct integration. Accept any reasonable rounding. Units not required.	

(e)	$M = \frac{4\pi a}{3b} \int_0^p 3br^2 \left(\frac{1}{1+br^3}\right) dr$ $= \frac{4\pi a}{3b} \left[\ln\left(1+br^3\right) \right]_0^p (1)$ $= \frac{4\pi a}{3b} \left[\ln\left(1+bp^3\right) - \ln 1 \right]$ $= \frac{4\pi a}{3b} \ln\left(1+bp^3\right)$		• Reaching stage (1) of the solution.	 E7 Solution with minor error. E8 Correct solution, with evidence of correct integration.
-----	---	--	---	---

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	lt with minor error(s).	lt

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{1}{2}e^{2x} - \frac{3}{4}e^{-4x} + c$	• Correct integral + c not required.		
(b)	$y = \int \frac{5}{4x - 3} dx$ $y = \frac{5}{4} \ln 4x - 3 + c$ y = 10 and x = 1 gives c = 10 i.e. $y = \frac{5}{4} \ln 4x - 3 + 10$	• Correct solution, with evidence of correct integration. Accept any reasonable rounding.		
(c)	$\frac{4x+5}{2x+3} = \frac{4x+6-1}{2x+3} = 2 - \frac{1}{2x+3}$ OR by long division or by inspection. $\int_{-1}^{m} \left(2 - \frac{1}{2x+3}\right) dx = 2m$ $\left[2x - \frac{1}{2}\ln 2x+3 \right]_{-1}^{m} = 2m (1)$ $\left[2m - \frac{1}{2}\ln(2m+3)\right] - \left[-2 - \frac{1}{2}\ln 1\right] = 2m$ $2m - \frac{1}{2}\ln(2m+3) + 2 + 0 = 2m$ $4 = \ln(2m+3)$ $2m + 3 = e^{4}$ $m = \frac{e^{4} - 3}{2} = 25.8$	• Reaching stage (1) of the solution.	• Correct solution, with evidence of correct integration. Accept any reasonable rounding.	

(d)	Area A = Area B	• Correct	• Correct	
	$\int_{0}^{k} 2\cos\left(\frac{x}{2}\right) dx = \int_{k}^{\pi} 2\cos\left(\frac{x}{2}\right) dx$	integration.	solution, with evidence of	
	$4\left[\sin\left(\frac{x}{2}\right)\right]_{0}^{k} = 4\left[\sin\left(\frac{x}{2}\right)\right]_{k}^{\pi}$ $\sin\left(\frac{k}{2}\right) = \sin\left(\frac{\pi}{2}\right) = \sin\left(\frac{k}{2}\right)$		correct integration. Accept any reasonable rounding.	
	$\sin\left(\frac{\pi}{2}\right)^{-0} = \sin\left(\frac{\pi}{2}\right)^{-\sin\left(\frac{\pi}{2}\right)}$			
	$2\sin\left(\frac{k}{2}\right) = 1$			
	$\sin\!\left(\frac{k}{2}\right) = \frac{1}{2}$			
	$\frac{k}{2} = \frac{\pi}{6}$			
	Accept $\frac{k}{2} = 0.5236$			
	Do not accept $\frac{k}{2} = 30$			
	$k = \frac{\pi}{3} = 1.047$			
	Alternative method:			
	Whole area = $\int_0^{\pi} 2\cos\left(\frac{x}{2}\right) dx$			
	$= 4 \left[\sin\left(\frac{x}{2}\right) \right]_{0}^{\pi}$			
	=4(1-0)=4			
	Then Area A = Area B = 2			
	i.e. $\int_0^x 2\cos\left(\frac{x}{2}\right) dx = 2$			
	$\Rightarrow 4 \left[\sin\left(\frac{x}{2}\right) \right]_0^k = 2$			
	$\Rightarrow \sin\left(\frac{k}{2}\right) = \frac{1}{2}$			
	$\implies k = \frac{\pi}{3} = 1.047$			

(e)	$\frac{dN}{dt} = k(N-18)$ $\int \frac{1}{N-18} dN = \int k dt$ $\ln N-18 = kt + c \qquad (1)$ $t = 30 \text{ and } N = 50 \text{ gives (using } t \text{ in minutes)}$ $\ln(50-18) = 30k + c \qquad (a)$ $t = 90 \text{ and } N = 30 \text{ gives}$ $\ln(30-18) = 90k + c \qquad (b)$ Solving equations (a) and (b) simultaneously gives: $k = -0.0163 \text{and} c = 3.95615$ So $\ln N-18 = -0.0163t + 3.95615$ When $t = 0$ gives: $\ln N-18 = 0 + 3.95615$ $N-18 = e^{3.95615}$ $N-18 = e^{3.95615}$ $N-18 = 52.26$ $N = 70.26 \text{ °C}$ Alternative method (using t in hours) t = 0.5 and $N = 50$ gives $\ln(30-18) = 0.5k + c$ $\Rightarrow \ln 32 = 0.5k + c \qquad (a)$ $t = 1.5$ and $N = 30$ gives $\ln(30-18) = 1.5k + c$ $\Rightarrow \ln 12 = 1.5k + c \qquad (b)$ Solving equations (a) and (b) simultaneously gives k = -0.9808 $c = 3.95615$ When $t = 0$ gives $N = 70.26 °C$	• Reaching stage (1) of the solution.	• Finding the values for k and c, with evidence of correct integration. Accept any reasonable rounding.	 E7 Solution with minor error. E8 Correct solution, with evidence of correct integration. <i>Accept any</i> <i>reasonable</i> <i>rounding</i>.
-----	---	---	---	--

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	lu	2u	3u	lr	2r	lt with minor error(s).	lt

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence	
0 - 06	07 – 12	13– 19	20 – 24	