Title	Demonstrate knowledge of basic electronic systems		
Level	2	Credits	5

Purpose	 People credited with this unit standard are able to demonstrate knowledge of: resistive voltage dividers; a resistor-capacitor circuit; resistor-diode combinations; transistor switches; and d.c. voltage in a single transistor amplifier.
---------	---

Classification	Electronic Engineering > Electronics Technology	
Available grade	Achieved	

Guidance Information

- 1 Suitable drawing symbols can be found in Robertson, M, *Electronics for Young Entrepreneurs* (2016), available from The Skills Organisation, <u>www.skills.org.nz</u>.
- 2 Definitions

Basic electronic systems refer to the following combinations of two or more electronic components:

- resistive voltage divider;
- capacitance charge-discharge circuit;
- resistor-diode combination;
- resistor-zener diode combination;
- single transistor used as switch or a basic amplifier;
- *d.c.* direct current;

LDR – light dependent resistor.

3 Assessment

Where needed, sketches and drawings may be used to aid explanations.

- 4 Range
 - a All calculations and measurements must be expressed in Système International (SI) units and multipliers.
 - b Use of resistor and capacitor colour coding charts is permitted during assessment.

Outcomes and performance criteria

Outcome 1

Demonstrate knowledge of resistive voltage dividers.

Performance criteria

- 1.1 Calculate the component values for a two-resistance voltage divider given input voltage and desired output voltage.
- 1.2 Calculate the output voltage of a two-resistance voltage divider from the input voltage and the resistance values.
- 1.3 Explain the behaviour of a voltage divider using an LDR and a fixed resistor with reference to changes in light level.
- 1.4 Take measurements to confirm the calculations carried out in performance criteria 1.1 and 1.2.

Outcome 2

Demonstrate knowledge of a resistor-capacitor circuit.

Performance criteria

- 2.1 Explain the charge and discharge characteristics of a capacitor through a resistor and confirm by measurement.
 - Range characteristics voltage vs time, and current vs time for charging and discharging.
- 2.2 Explain the concept of time constant in terms of the time to charge or discharge a capacitor.
- 2.3 Determine the time constant for a resistor-capacitor combination.

Outcome 3

Demonstrate knowledge of resistor-diode combinations.

Performance criteria

- 3.1 Explain the behaviour of resistor-diode combinations using circuit schematics and characteristic curves.
- 3.2 State the characteristics of a zener diode-resistor voltage regulator using circuit schematics and characteristic curves.
- 3.3 Take measurements to confirm the explanation and sketches.

Outcome 4

Demonstrate knowledge of transistor switches.

Performance criteria

- 4.1 Explain the operation of a transistor switch circuit in terms of its on and off conditions.
- 4.2 Take a measurement to confirm the explanation of performance criterion 4.1.
- 4.3 Describe the function of a transistor switch in a practical application.

Outcome 5

Demonstrate knowledge of d.c. voltage in a single transistor amplifier.

Range voltage divider with a transistor emitter resistor.

Performance criteria

- 5.1 Explain the functions of all components.
- 5.2 Calculate collector, base, and emitter voltages in a given circuit.
- 5.3 Take measurements to confirm correct use of calculation procedures.

Planned review date	31 December 2025
---------------------	------------------

Status information and last date for assessment for superseded versions

Process	Version	Date	Last Date for Assessment
Registration	1	30 April 2001	31 December 2012
Revision	2	12 March 2002	31 December 2012
Revision	3	17 March 2004	31 December 2012
Review	4	25 May 2007	31 December 2024
Rollover and Revision	5	15 March 2012	31 December 2024
Revision	6	15 January 2014	31 December 2024
Rollover and Revision	7	27 January 2015	31 December 2024
Review	8	24 June 2021	N/A

Consent and Moderation Requirements (CMR) reference	0003		
This CMR can be accessed at http://www.nzga.govt.nz/framework/search/index.do.			

Comments on this unit standard

Please contact The Skills Organisation <u>reviewcomments@skills.org.nz</u> if you wish to suggest changes to the content of this unit standard.